Using a physiological based pharmacokinetic model to evaluate the influence of covariates on sunitinib exposure

Authors: Ashley Hopkins, Angela Rowland, Ganessan Kichenadasse, Andrew Rowland
ash.hopkins@flinders.edu.au
Sunitinib

- Anti-tumour Tyrosine Kinase Inhibitor
- mRCC, GISTs and pancreatic tumours
- Toxicities limit dosing to 50 mg OD for 4 weeks followed by 2 off weeks
- Css trough < 50 ng/mL associated with decreased efficacy\(^1\)
- Css trough > 100 ng/mL associated with increased toxicity
- Substantial between individual pharmacokinetic variability
- Largely unknown which physiological variables drive the variability in concentrations?

Aim

• Develop a full physiological based pharmacokinetic (full-PBPK) model to evaluate the influence of covariates on sunitinib exposure
Methods

- Full PBPK model built in Simcyp 15.1®
- Profile built based on *in vitro* and physiochemical data
- Trained against single dose healthy volunteer data
- Validated against population exposure data
- Used to assess the potential impact of age, gender, ethnicity, disease states
- Used in a virtual study (phase imaginary study) to identifying the most promising precision medicine markers
SimCYP

Input

Mathematical Model

Simulated PK and Population Data

Mechanistic Population Model

Mechanistic Drug Model

Physiochemical, *In Vitro* and *In Vivo* Data

Mechanistic Population PBPK Model

Pharmacokinetics and Population Output
Sunitinib Profile

Physiochemical Properties

- Molecular weight: 398.47
- $\log P_{o:w}$: 2.6
- pK_a: 11.3

Protein Binding

- B/P: 0.623
- F_{up}: 0.050

Absorption (ADAM model)

- PSA: 77.2
- HBD: 3
- $P_{eff,man}$ (10^{-4} cm/s): 0.590

Distribution (full PB-PK model)

- V_{ss} (L/kg): 27.57

Metabolism (CL_{int}; μL/min/mg)

- CYP2C8: 1.57
- CYP3A4: 106.01

Transport (CL_{int}; μL/min)

- Intestinal Efflux (P-gp): 37.34
- Passive diffusion (CL_{PD}): 0.1
- Hepatic Efflux (P-gp): 37.34
Single Dose Simulations

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Simulated Cohort</th>
<th>mean AUC ± 95% CI (ng/mL/hr)</th>
<th>% Difference of the Mean</th>
<th>Known influence</th>
<th>Concordance with literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (50 mg)</td>
<td>1201 ± 142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1037 ± 137</td>
<td>-13.7</td>
<td></td>
<td>Females have a 50% higher exposure than males</td>
<td>✓</td>
</tr>
<tr>
<td>Female</td>
<td>1571 ± 172</td>
<td>30.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbid Obesity</td>
<td>1785 ± 222</td>
<td>48.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geriatric</td>
<td>2252 ± 310</td>
<td>147.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>1605 ± 245</td>
<td>33.6</td>
<td></td>
<td>Increased exposure in Asians</td>
<td>✓</td>
</tr>
<tr>
<td>Chinese</td>
<td>2423 ± 330</td>
<td>101.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer Patients</td>
<td>1483 ± 300</td>
<td>23.5</td>
<td></td>
<td>▲ Inter and intra-individual variability</td>
<td>✓</td>
</tr>
<tr>
<td>Child-Pugh C</td>
<td>6985 ± 1191</td>
<td>481.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR < 30 ml/min</td>
<td>1694 ± 165</td>
<td>41.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 mg</td>
<td>601 ± 71</td>
<td></td>
<td></td>
<td>Dose proportional in normal dose range</td>
<td>✓</td>
</tr>
<tr>
<td>37.5 mg</td>
<td>901 ± 106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.5 mg</td>
<td>1501 ± 178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exposure Variability Between Populations

Physiology
- Morbidly Obese
- Control
- Males
- Females
- Geriatric

Ethnicity
- Control
- Japanese
- Chinese

Disease
- GFR < 30
- Control
- Cancer
- Cirrhosis

Kichenadasse et al. 2017 Unpublished data
Clinical significance of the differences between the populations?

Physiological variables driving concentration variability?

Use simCYP to conduct a virtual study (a phase imaginary study)
Phase imaginary studies

- *Phase i* trials use mechanistic models (physiological models) to simulate virtual population outcomes from which the factors driving individual differences can be determined

Virtual trials in virtual patients

Is this how we will accelerate progress in personalised treatments?
Indentify the Model Variables that Predict Exposure to Sunitinib

• Simulated steady state concentrations of sunitinib in 1000 virtual cancer patients within the simCYP database

• The characteristic of these virtual patients were then assessed for their predictive performance on a sunitinibCss trough < 50 ng/mL

• Characteristics Tested:
 1. Baseline physiological variables (Age, Sex, Weight, BMI > 35, BSA, GFR)
 2. Baseline enzyme abundances (CYP1A2, CYP2C9, CYP2C8, CYP3A4, Pgp, BCRP abundances)
Baseline Physiological Variable Model

- Model developed through the backwards deletion (AIC) of the significant physiological on univariate analysis
- Model included – Age, Weight and BSA

Sensitivity (True positive rate) = Rate of correctly predicting concentrations below 50 ng/ml

1 - Specificity (True negative rate) = Rate of correctly predicting concentration above 50 ng/ml
Baseline Physiological + Enzyme Abundance Model

• Model developed through the backwards deletion (AIC) of the enzyme abundances significant on univariate analysis

• Model included – Baseline physiological variables and log of CYP3A4, P-GP & BCRP abundances

Sensitivity (True positive rate) = Rate of correct predicting concentrations below 50 ng/ml

1 - Specificity (True negative rate) = Rate of correctly predicting concentration above 50 ng/ml

AUC 0.86
Accuracy 0.77
Conclusion

• Developed a sunitinib PBPK model consistent with reported exposures
• Demonstrated concentration variability for under studied populations
• Via a virtual trial, demonstrated that enzyme abundances appear to drive pharmacokinetic variability
Acknowledgments:
Andrew Rowland
Michael Sorich
Angela Rowland
Ganessan Kichenadasse

Funding Bodies:
NBCF
Ramaciotti Foundation
NHMRC
Flinders Foundation
Thank you:

Questions/Discussion
<table>
<thead>
<tr>
<th>Logistic Regression Variable</th>
<th>OR</th>
<th>2.50%</th>
<th>97.50%</th>
<th>P - value</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.966</td>
<td>0.953</td>
<td>0.979</td>
<td><0.001</td>
<td>0.588</td>
</tr>
<tr>
<td>Sex (Male)</td>
<td>1.240</td>
<td>0.966</td>
<td>1.593</td>
<td>0.091</td>
<td>0.527</td>
</tr>
<tr>
<td>Weight</td>
<td>1.015</td>
<td>1.006</td>
<td>1.024</td>
<td>0.002</td>
<td>0.559</td>
</tr>
<tr>
<td>BMI > 35</td>
<td>0.738</td>
<td>0.339</td>
<td>1.60</td>
<td>0.437</td>
<td>0.504</td>
</tr>
<tr>
<td>BSA</td>
<td>4.009</td>
<td>2.063</td>
<td>7.88</td>
<td><0.001</td>
<td>0.572</td>
</tr>
<tr>
<td>Cardiac.Output</td>
<td>1.011</td>
<td>1.007</td>
<td>1.015</td>
<td><0.001</td>
<td>0.594</td>
</tr>
<tr>
<td>log(GFR)</td>
<td>1.973</td>
<td>1.272</td>
<td>3.077</td>
<td>0.003</td>
<td>0.554</td>
</tr>
<tr>
<td>log(CYP1A2)</td>
<td>1.394</td>
<td>1.162</td>
<td>1.678</td>
<td><0.001</td>
<td>0.563</td>
</tr>
<tr>
<td>log(CYP2C9)</td>
<td>1.48</td>
<td>1.223</td>
<td>1.797</td>
<td><0.001</td>
<td>0.576</td>
</tr>
<tr>
<td>log(CYP2C8)</td>
<td>1.371</td>
<td>1.162</td>
<td>1.621</td>
<td><0.001</td>
<td>0.56</td>
</tr>
<tr>
<td>log(CYP3A4)</td>
<td>6.086</td>
<td>4.804</td>
<td>7.825</td>
<td><0.001</td>
<td>0.815</td>
</tr>
<tr>
<td>log(P.gp)</td>
<td>2.8</td>
<td>2.232</td>
<td>3.541</td>
<td><0.001</td>
<td>0.665</td>
</tr>
<tr>
<td>log(BCRP)</td>
<td>2.232</td>
<td>1.708</td>
<td>2.935</td>
<td><0.001</td>
<td>0.606</td>
</tr>
</tbody>
</table>
Cancer Population Exposure

Pop PK Model = Khosravan et al. 2016 (Population Pharmacokinetic/Pharmacodynamic Modeling of Sunitinib by Dosing Schedule in Patients with Advanced Renal Cell Carcinoma or Gastrointestinal Stromal Tumor)