Host Genetic Determinants of the Vaginal Microbiome and Bacterial Vaginosis in Kenyan Women

Supriya D. Mehta, Drew R. Nannini, Fredrick Otieno, Stefan J. Green, Walter Agingu, Brian Joyce, Yinan Zheng, Lifang Hou

NIH, NIAID R01 AI110369
Background

• Bacterial vaginosis: High diversity and lack of *L. crispatus*
 • 20-50% prevalence in Eastern and Southern African countries
• Meta-analysis: 1.6x increased risk of HIV acquisition
 • Population attributable fraction: 15%
• Risks for BV: sexual practices, male partner circumcision status, vaginal hygiene practices
• Unexplained variability and persistent racial differences suggest genetic component

Background

• Limited number and scope of candidate gene studies identify host differences in genes for inflammatory immune factors (e.g., genes encoding TLRs, IL-1β)

• No genome wide association study (GWAS) of vaginal microbiome traits and BV

• **Objective:** Conduct GWAS on BV and vaginal microbiome traits to broadly elucidate biological mechanisms of these complex traits
Methods: Study Sample, BV

• Afya Jozi, Afya Jamii: Prospective cohort of 252 heterosexual couples in Kisumu, Kenya
• Baseline samples from 200 women, selected to maximize the number of women with and without BV
• BV assessed at baseline, 1-, 6-, and 12- months: Nugent scoring of Gram stained vaginal smear; dichotomized 7-10 vs. 0-6
• Microbiome characterization in cervicovaginal lavage samples: 16s rRNA gene amplicon sequencing of the V3-V4 regions (UIC)
• Quality control and taxonomic annotation UMD Institute for Genomic Science
Methods: Genotyping and Quality Control

• Oral buccal swabs for genotyping

• Samples genotyped using the Illumina Global Screening Array (~654,000 markers)

• Removed SNPs: MAF < 1% and missingness > 5%

• Imputed dataset using the Kenyan reference panel from 1000 Genomes Project via Minimac3
Methods: Analysis

• Data from 176 women after QC of microbiome and SNP data

• Linear and logistic regression (PLINK, Mach2DAT, Mach2QTL), adjusting for age and first 3 principal components for association between SNPs and:
 • Proportion of BV-positive visits across follow-up (82% ≥3 visits)
 • Relative abundances of *L. crispatus*, *L. iners*, and *G. vaginalis*
 • Shannon diversity index

• Pathway analysis (SKAT-O, WebGestalt) to identify putative biological processes associated with microbiome traits and BV
Results: Sample Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age in years (IQR)</td>
<td>22 (20-25)</td>
</tr>
<tr>
<td>HIV positive</td>
<td>9.8%</td>
</tr>
<tr>
<td>HSV-2 seropositive</td>
<td>54%</td>
</tr>
<tr>
<td>BV at baseline</td>
<td>22%</td>
</tr>
<tr>
<td>BV at any point in follow-up</td>
<td>43%</td>
</tr>
<tr>
<td>Multiple visits with BV</td>
<td>25%</td>
</tr>
<tr>
<td>L. crispatus present / mean relative abundance</td>
<td>24% / 30%</td>
</tr>
<tr>
<td>L. iners present / mean relative abundance</td>
<td>83% / 46%</td>
</tr>
<tr>
<td>G. vaginalis present / mean relative abundance</td>
<td>74% / 23%</td>
</tr>
<tr>
<td>Median Shannon diversity index (IQR)</td>
<td>0.93 (0.30 – 1.82)</td>
</tr>
</tbody>
</table>
Results of GWAS

Lactobacillus crispatus

- \(P = 4.99 \times 10^{-6} \)
- \(\text{OR} = 4.53 \) (A)
- \(\text{MAF} = 0.36 \)

Lactobacillus iners

- \(P = 5.20 \times 10^{-7} \)
- \(\beta = 1.05 \) (A)
- \(\text{MAF} = 0.06 \)
Results of GWAS

Probability of Bacterial Vaginosis

- $P = 7.38 \times 10^{-7}$
- $\beta = 0.72$ (A)
- MAF = 0.01

Shannon Diversity Index

- rs115869045
 - $P = 3.70 \times 10^{-7}$

- $P = 9.89 \times 10^{-7}$
- $\beta = 0.67$ (A)
- MAF = 0.20
Results of GWAS

\[P = 2.15 \times 10^{-6} \]
\[\beta = 0.58 \text{ (A)} \]
\[\text{MAF} = 0.45 \]
Pathway Analysis: *L. crispatus*

- Abnormality of the genitourinary system
- Abnormality of the urinary system
- Abnormality of the female genitalia
- Hypoplastic labia minora
- Abnormal vitamin B12 level
- Decreased methylcobalamin
- Hyperhomocystinemia
- Abnormality of Krebs cycle metabolism
- Decreased methionine synthase activity
- Decreased adenosylcobalamin
- Hypomethioninemia
- Decreased methylmalonyl-CoA mutase activity
Pathway Analysis: G. vaginalis

Ontology

Abnormality of metabolism/homeostasis

Abnormality of the genitourinary system

Abnormality of the urinary system

Number of Genes

size

- 1400
- 1500
- 1600
- 1700
- 1800

FDR

- 0.0450
- 0.0455
- 0.0460
Pathway Analysis: *L. iners*
Pathway Analysis: Proportion of Visits with BV

- I-kappaB kinase/NF-kappaB signaling
- Regulation of I-kappaB kinase/NF-kappaB signaling
- Positive regulation of I-kappaB kinase/NF-kappaB signaling
- Positive regulation of NF-kappaB transcription factor activity
- Alcohol dehydrogenase activity, zinc-dependent
Discussion

• First GWAS of host genetic contribution to vaginal microbiome traits and BV

• We identified genetic loci and biologically relevant pathways associated with these traits, adding to evidence of host genetic influences on vaginal microbiome composition and BV

• Limitations:
 • Pathway results still a jump from true biological mechanisms
 • Methodologic challenge to analysis of categorical traits, such as community state type
Conclusions and Next Steps

• Further studies: Larger samples with comparison across microbiome sites within individuals, and across populations:
 • African women, African American women
 • ❶ Broader evaluation of pathobiant taxa, ❷ Confirm candidate SNPs, ❸ Gene x Environment Interactions

• Potential applications: Better understanding of, and predict susceptibility to: ❶ BV occurrence, treatment failure or recurrence; ❷ optimal benefit of probiotic treatment; ❸ potentially aid in preventing other pathological conditions related to vaginal dysbiosis
Thank you! Questions?

Acknowledgements: Participants, NRHS Study Staff:
Winnie Odongo, Finch Odhiambo

Funder: NIH