Population pharmacodynamics modelling of circulating lymphocyte dynamics in chronic lymphocytic leukemia patients under ibrutinib treatment

Fanny GALLAIS – 3rd year PhD student

PhD supervisors: Mélanie White-Koning, Ben Allal

Cancer Research Center of Toulouse – INSERM U1037 – Paul Sabatier University of Toulouse, France

Team 14 « Dose individualization of anti-cancer drugs » - E. Chatelut
Background

➢ **Chronic Lymphocytic leukemia (CLL)**
 - Accumulation of non functional B-cells in lymph nodes and blood
 - Most common form of leukemia in adults

➢ **Ibrutinib**
 - Tyrosine kinase inhibitor targeting the Bruton Tyrosine Kinase (BTK)
 - First line treatment for CLL (FDA, 2016)
 - Highly variable PK (Bioavailability F=3%)

Fig.1 Ibrutinib inhibits the BTK involved in the B-cell receptor signaling pathway (Herrera et al. 2014)
Background

➢ Ibrutinib effects on lymphocytes\(^1\)
 - Anti-proliferation
 - Egress from lymph nodes
 - Inhibition of re-homing to lymph nodes
 - Death in blood and lymph nodes

OBJECTIVE: To develop a population PD model describing circulating lymphocyte dynamics in CLL patients under ibrutinib treatment

3 types of lymphocyte dynamics profiles are observed in patients\(^2\)
1. No lymphocytosis
2. Transitory lymphocytosis
3. Prolonged lymphocytosis

\(^2\)Herman SE. et al. Leukemia. 2014 Nov;28(11):2188-96
\(^3\)Brown JR. et al. Leukemia. 2018;32(1):83–91

Fig.2 Various Lymphocyte dynamics profiles observed in patients

Better long term prognosis\(^3\)
Data

➢ 77 CLL patients treated by ibrutinib

➢ Lymphocyte count: **0 to 24 months**

➢ **506** observations
 (2 to 10 observations per patient)

➢ All types of profiles

➢ High **inter-individual variability**

![Fig.3 Lymphocyte counts over time for all patients](image)
Ibrutinib effects on lymphocytes

- Anti-proliferation
- Egress from lymph nodes
- Inhibition of re-homing to lymph nodes
- Death in blood and lymph nodes

Fig. 4 Representation of physio-pharmacological knowledge on CLL cells dynamics and ibrutinib effects
A PK-PD model?

Initial purpose: build a PK-PD model

Fig.4 Representation of physio-pharmacological knowledge on CLL cells dynamics and ibrutinib effects

Fig.5 Final PK model for ibrutinib and its active metabolite
A PK-PD model?

PK Model (IPP)

\[
\frac{dA_1}{dt} = K \cdot A_1 \cdot \left(1 - \frac{\text{DRUG}_{\text{BASE2}_{\text{CIRC}}}}{\text{CIRC}}\right) - K \cdot A_1
\]

\[
\frac{dA_2}{dt} = K \cdot A_1 - K \cdot (A_2 - \text{offset})
\]

DRUG = SLOPE \cdot CONC

\[
F_1 = \text{BASE1}
F_2 = \text{BASE2}
\]

\[\text{CIRC} = A(2)\]

No drug concentration in the model

\[
\frac{dA_1}{dt} = K_p \cdot A_1 - K_{OUT} \cdot A_1
\]

\[
\frac{dA_2}{dt} = K_{OUT} \cdot A_1 - K_{DTH} \cdot (A_2 - \text{offset})
\]

F1 = BASE1

F2 = BASE2

MIXTURE (K_{OUT})

\[
K_p
\]

PK Model (IPP)

\[
\frac{dA_1}{dt} = K_p \cdot A_1 - K_{OUT} \cdot A_1
\]

\[
\frac{dA_2}{dt} = K_{OUT} \cdot A_1 - K_{DTH} \cdot (A_2 - \text{offset})
\]

DRUG = SLOPE \cdot CONC

\[
F_1 = \text{BASE1}
F_2 = \text{BASE2}
\]

K_{DTH}

K_{OUT}

K_{DTH}

K_{DTH}

F1 = BASE1

F2 = BASE2
A PK-PD model?

Initial purpose: build a PK-PD model

- PK-PD tested models were no better than the PD model without concentration effect
- Ibrutinib effects do not seem to be correlated with the drug concentration level

PK-PD relationship? More complex? How to model it?

Fig.6 Ibrutinib AUC and Cmax vs. lymphocytosis group
PD model

PD model without concentration effect

\[
\frac{dA_1}{dt} = K_p \times A_1 - K_{OUT} \times A_1 - K_{DTH} \times A_1
\]

\[
\frac{dA_2}{dt} = K_{OUT} \times A_1 - K_{DTH} \times (A_2 - off_set)
\]

BASE_BLOOD = BASE \[1\]

BASE_LYMPH = BASE \times (1 + PBASE)

Parameter	**Estimation (RSE)**	**IIV (RSE) [Shr]**
\(K_p \text{ (day}^{-1}\)) | 0.0557 (13%) | NE
\(K_{OUT} \text{ (day}^{-1}\)) | 0.0085 (24%) | 122% (20%) [14%]
\(K_{DTH} \text{ (day}^{-1}\)) | 0.0586 (11%) | NE
\(off_set \text{ (G/L)}\) | 2.97 (5%) | 195% (7%) [16%]
\(BASE \text{ (G/L)}\) | 58 (26%) | 257% (11%) [1%]
\(PBASE \text{ (−)}\) | 6.3 (36%) | 381% (13%) [12%]
Proportional residual variability (CV%) | 25.6% (8%) | -

Tab. 1 Parameter estimates for final PD model
PD model

PD model without concentration effect

\[
\begin{align*}
\frac{dA_1}{dt} &= K_P \cdot A_1 - K_{OUT} \cdot A_1 - K_{DTH} \cdot A_1 \\
\frac{dA_2}{dt} &= K_{OUT} \cdot A_1 - K_{DTH} \cdot (A_2 - \text{offset})
\end{align*}
\]

\[BASE_{BLOOD} = BASE \quad BASE_{LYMPH} = BASE \cdot (1 + PBASE)\]

Fig. 7 Final PD model

Fig. 8 Goodness-of-fit plots for final PD model
Covariate exploration → biomarkers for response?

\[\text{BASE}_{\text{BLOOD}} = \text{BASE} \quad \text{BASE}_{\text{LYMPH}} = \text{BASE} \times (1 + PBASE) \]

The parameter \(PBASE \) discriminates between the 3 response groups.

- Tested covariates: Morphology, Biology, Pathology, PK, etc.
- Covariates to be tested: ex-vivo experiments on patients’s CLL cells

Association with clinical outcome

Fig. 9 PBASE parameter vs. lymphocytosis profiles
Discussion

➢ A PK-PD model?
 • Unknown relationship
 • How to model it?

➢ First population PD model to describe lymphocyte count dynamics
 • The model describes the data well
 • But does not totally reflect the physiological reality
 • More data to come: Improve the model? External evaluation?

➢ Aim of the model
 • PBASE parameter: response group classification
 • Covariate exploration: identify response biomarkers?
 • Relationship with clinical outcome
Thank you for your attention

Acknowledgments

Mélanie White-Koning
Etienne Chatelut

Loïc Ysebaert
Anne Quillet-Mary
Lucie Obéric
Fabien Despas
Sandra De Barros
Loïc Dupré

Emilie Henin
Laurence Del Frari
Alicja Puszkiel
Ben Allal
Sabrina Marsili
Thierry Lafont
Malika Yakoubi