HIV persistence on ART

Dr. Denise Hsu
BScMBBS, PhD
Research Physician AFRIMS, Bangkok

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense.
No conflict of interest to disclose
• Despite the success of ART, viral rebound is inevitable in almost all individuals when treatment is interrupted.

• The main obstacle to HIV cure is the persistence of HIV despite ART and plasma viral suppression to undetectable levels on commercial assays.

• Understanding the mechanisms of HIV persistence is essential for the development of strategies to induce HIV remission.
Summary of presentation

- Detection/quantification of HIV persistence
- Establishment of HIV persistence
- Effect of ART on HIV persistence
- Mechanisms of viral persistence on ART
• HIV persistence on ART is due to the existence of

1. Latent viral reservoir
 • made up of infected cells that harbor HIV DNA
 • during latency, these cells are transcriptionally silent but can later become activated and produce infectious HIV virion.

2. Ongoing transcription and virus production
ART

Integrated HIV DNA

Transcription (HIV mRNA)

Translation (HIV protein)

Virion production
Detecting/Quantifying HIV persistence
Detecting and quantifying the latent HIV reservoir

- QVOA (quantitative viral outgrowth assay)

- HIV DNA
 - Single-region PCR-based assay

- TILDA (Tat-/Rev-induced limiting dilution assay)

<table>
<thead>
<tr>
<th></th>
<th>QVOA</th>
<th>HIV DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell numbers required</td>
<td>~100 million PBMC</td>
<td>~5 million PBMC</td>
</tr>
<tr>
<td>Time required</td>
<td>~2 weeks</td>
<td>1 day</td>
</tr>
<tr>
<td>Indicate replication competency</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Under estimates</td>
<td>Over estimates</td>
</tr>
</tbody>
</table>

- **Intact proviral DNA assay (IPDA)**
 - Digital droplet PCR assay detects intact, cell-associated, full-length genomic HIV DNA
Detecting and quantifying ongoing transcription

• Detects HIV RNA

 ➢ Cell associated HIV-RNA
 • Presence does not necessarily imply productive replication

 ➢ Single copy assay
 • Plasma (cell-free) RNA
 • Majority of individuals on ART with undetectable VL on conventional assay still have detectable HIV RNA on SCA

Malderelli et al. Plos Pathogen. 2007; Palmer et al. PNAS. 2008
Establishment of HIV persistence
The HIV reservoir is established very early

- Initiated ART during Fiebig I acute HIV infection
- On ART for a median of 2.8 years
- All experienced rapid viral load rebound following analytical treatment interruption

Colby et al. Nat Med. 2018
Majority of the latent reservoir is in memory CD4+ cells

Other cell types

- Monocytes, tissue macrophages and dendritic cells
 - Are susceptible to HIV infection
 - Express CD4, CCR5 and CXCR4
 - Relatively long-lived

- Harbor HIV DNA in the setting of plasma viral suppression with ART

- Their contribution to the latent reservoir is still unclear

Zalar et al. Antiviral Research. 2010; Ganor et al. Nat Microbiol. 2019
Effect of ART on the HIV reservoir
Decay of the HIV reservoir is slow

- $t_{1/2} = 44$ months in individuals on ART with plasma viral suppression
- Require 73 years of ART to eradicate a reservoir of 1 million cells

ART during acute infection reduces the size of the HIV reservoir

HIV persistence on ART
Anatomical Locations of HIV persistence on ART

<table>
<thead>
<tr>
<th>Tissue</th>
<th>HIV DNA</th>
<th>HIV RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gut</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CNS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spleen</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kidney</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reproductive tract</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liver</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Wong et al. Curr Opin HIV AIDS. 2016
Sources of HIV persistence

1. Latently infected cells
 - Survival of long-lived latently infected cells
 - Potentially target with kick and kill strategy
 - Clonal expansion of latently infected cells
 - Populations of cells with identical HIV sequences and integration sites

 - Homeostatic proliferation
 - Antigen stimulation
 - Integration in genes that control growth and development of cells/ cancer associated genes

Clonal expansion

• >50% of the inducible, replication-competent HIV reservoir consists of CD4\(^+\) T-cells carrying identical proviral sequences.

 Bui et al. Plos pathogens. 2014

• Clonally expanded provirus can be intact and infectious

 Simonetti et al. Proc Natl Acad Sci USA. 2016

• These clones can be a source of initial rebound viremia during ATI

• Potentially target with anti-proliferative therapies
2. Persistent viral expression on ART

• >80% of patients on ART for 60 wk have persistent viremia (median of 3.1 copies/ml) on single copy assay.

Malderelli et al. Plos Pathogen. 2007

• Potential sources

 1) ongoing cycles of viral replication and infection (controversial)
 • Inadequate ART potency
 • Inadequate ART penetrance at sanctuary sites

 2) ongoing virus production from integrated proviruses, but ongoing cycles on infection blocked by ART
Why is the differentiation important?

1) If there is ongoing cycles of viral replication and infection
 - Focus research on improving ART potency and penetration

2) If there is ongoing virus production from integrated proviruses
 - Not targeted by existing immune responses
 - Latency reversal agents will not affect this population
 - Block and lock strategy may have greater potential
1. Ongoing cycles of viral replication and infection

- Unlikely in peripheral blood
 - Emergence of new variants whilst on ART is rare
 Kearney et al. Plos Pathogen. 2014
 - The majority of studies showed no reduction in the level of persistent viremia with treatment intensification
 Gandhi et al. JAIDS. 2012
Ongoing cycles of viral replication and infection

- May potentially occur in sanctuary sites

<table>
<thead>
<tr>
<th></th>
<th>Lymph Node</th>
<th>CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced immune mediated killing</td>
<td>Fukazawa. Nat Med. 2015.</td>
<td></td>
</tr>
</tbody>
</table>
2. Ongoing virus production from integrated provirus

- Clonally expanded intact provirus can produce sufficient virus to cause detectable low-level viremia

 Simonetti et al. Proc Natl Acad Sci USA. 2016; Halvas et al. CROI. 2019

- Plasma viral sequences matches proviral sequences matches QVOA well sequences

- No ART resistance mutation

- No sequence evolution in the clones

- Mechanisms of escape are yet to be determined

- How to suppress these clones?
Summary

• Understanding the mechanisms of HIV persistence is essential for the development of strategies to induce HIV remission.

• HIV persistence on ART is due to the existence of

 1. Latent viral reservoir
 2. Ongoing transcription and virus production
Acknowledgements

The study participants

Thai Red Cross
Praphan Phanuphak
Nittaya Phanuphak
Eugene Kroon
Donn Colby
Nipat Teeratakulpisarn
Mark de Souza
James Fletcher
Phillip Chan
Nitiya Chomchey
Jintana Intasan
Tippawan Pankam
Sasiwimol Ubolym

Chulalongkorn University
Kiat Ruxrungtham
Rungsun Rerknimit
Sukalya Lerdum
Netsiri Dumnongpisutkul
Mantana Pothisri
Phandee Wattanaboonyongcharoen
Ponlapat Rojnuckarin
Sopark Manasnayakorn
Sunee Sirivichayakul

UNC
Gail Henderson
Jean Cadigan

Industry
Thai Gov Pharm Organization
ViiV Healthcare
Gilead
Merck

AFRIMS
Robert O’ Connell
Rapee Trichavaroj
Bessara Nantapinit
Siriwat Akapirak

U Montréal
Nicolas Chomont
Remi Fromentin

UCSF
Victor Valcour
Joanna Hellmuth

Yale
Serena Spudich

NIH
Irini Sereti
Daniel Douek
Eli Bortiz
Frank Maldarelli

Leidos-NCI Frederick
Claire Deleage
Robert Gorelick
Michael Piatak
Robin Dewar
Adam Rupert

OHSU
Jacob Estes

U Minnesota
Tim Schacker

U Hawaii
Lishomwa Ndholu

MHRP
Jintanat Ananworanich
Sandhya Vasan

Nelson Michael
Merlin Robb
Julie Ake
Trevor Crowell
Sodsai Tovanabutra
Linda Jagodzinski
Lydie Trautmann
Diane Bolton
Shelly Krebs
Bonnie Slike
Michael Eller
Leigh Ann Eller
Morgane Rolland
Rasmi Thomas
Suteera Pinyakorn
Supranee Buranapraditkun
Tsedal Mebrahtu
Maddy Ouellette
Oratai Butterworth
Ellen Turk

Case Western
Rafick Sekaly

RTI International
Holly Peay

UT Houston
Netanya Sandler

Drexel
Elias Haddad