Physiologically-Based Pharmacokinetic Modeling of Rilpivirine During Pregnancy

Mary Gockenbach
Mary.Gockenbach@fda.hhs.gov
Division of Pediatrics and Maternal Health
US FOOD AND DRUG ADMINISTRATION
5/15/2019

Disclaimer: The views expressed in this presentation are those of the presenter and do not reflect the official views of the FDA. No official endorsement by the FDA is intended nor should be inferred.
• A physiologically-based pharmacokinetic (PBPK) modeling approach may be used to assess the effect of pregnancy on drug pharmacokinetics (PK).
• We developed a PBPK model for rilpivirine (RPV) using Simcyp® v16.1 with physicochemical, in vitro, and clinical PK parameters from literature.
Methods

• The model built in the nonpregnant state was verified with PK data from clinical trials in healthy volunteers and adults living with HIV.

• The RPV model was then modified to account for the progressive physiological changes of pregnancy, including changes in:
 ▪ albumin
 ▪ CYP3A4 activity
 ▪ glomerular filtration rate

• Predictions were verified from 3 clinicals trials in pregnant women living with HIV.
Results from the Nonpregnant State

- Predictions for RPV PK fell within a 2-fold range of observed clinical values.
Results from 2nd Trimester

- Predictions for RPV PK fell within ± 50% of the mean observed clinical values.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Predicted</th>
<th>Observed</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (ng/ml)</td>
<td>140</td>
<td>142</td>
<td>0.99</td>
</tr>
<tr>
<td>AUC (ng.hr/ml)</td>
<td>2369</td>
<td>2090</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Results from 3rd Trimester

- Predictions for RPV PK fell within ± 50% of the mean observed clinical values.

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Observed</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (ng/ml)</td>
<td>139</td>
<td>124</td>
<td>1.12</td>
</tr>
<tr>
<td>AUC (ng.hr/ml)</td>
<td>2387</td>
<td>1700</td>
<td>1.40</td>
</tr>
</tbody>
</table>
Conclusion

• Progressive physiological changes during pregnancy incorporated in the model lead to:
 ▪ Increase in the fraction of drug unbound in plasma (16 – 30%)
 ▪ Increase in the volume of distribution (50 – 60%)
 ▪ Increase in clearance (50%)
• Our PBPK model for RPV captured the effects of pregnancy on maternal exposure, with a predicted decrease in exposure of approximately 30% for AUC and C_{min} when compared with non-pregnant adults.
• Future work will investigate the effects of modifying the Simcyp® pregnant population using laboratory values collected from pregnant women living with HIV in the P1026s database.
• Additional antiretroviral compound models will be built to continue assessment of predictive performance of the pregnancy PBPK model.
Acknowledgments

Thank you to our team: Manuela Grimstein (FDA/CDER/OCP), Jeremiah Momper (UC San Diego), Mark Mirochnick (Boston University School of Medicine), Edmund Capparelli (UC San Diego), Kimberly Struble (FDA/CDER/DAVP), Jian Wang (FDA/CDER/OND/ODEIV), Yaning Wang (FDA/CDER/OCP), Tamara Johnson (FDA/CDER/DPMH), and Hari Cheryl Sachs (FDA/CDER/DPMH), for the Antiretrovirals in Pregnancy PBPK Modeling Group.

This project was supported by an appointment to the Research Fellowship Program at the U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education. Overall support for the IMPAACT Network was provided by the National Institute of Allergy and Infectious Diseases with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health, all components of the National Institutes of Health, under Award Numbers UM1AI068632, UM1AI068616, and UM1AI106716, and by NICHD contract number HHSN275201800001I.
References

