Effect of CYP2B6 Metabolizer Status on Levonorgestrel Pharmacokinetics When Combined with Efavirenz-based Antiretroviral Therapy

Michelle Pham, Olive Mbabazi, Megan Neary, Shadia Nakalema, Kayla Campbell, Lauren Cirrincione, Anthony T. Podany, Marco Siccardi, Courtney V. Fletcher, Andrew Owen, Mohammed Lamorde, Kimberly K, Scarsi

M. Pham has no financial relationships with commercial entities to disclose.
Background

• Progestin-releasing implants are an important contraceptive option
• Significant drug-drug interactions (DDIs) exist between levonorgestrel (LNG) and efavirenz (EFV)-containing antiretroviral therapy (ART):
 • LNG subdermal implant (150mg) plus EFV-based ART resulted in 45-57% lower LNG concentrations\(^1\)
 • Doubling the LNG implant dose (300mg) still resulted in 34% lower LNG concentrations\(^2\)
 • The mechanism of this interaction is proposed to be CYP3A4 mediated
• EFV metabolism is influenced by \textit{CYP2B6} single nucleotide polymorphisms (SNPs)
 • \textit{CYP2B6} SNPs associated with slow metabolism and high EFV concentrations resulted in lower LNG exposure\(^3\)

Objective

To evaluate the impact of CYP2B6 genotype on double dose (300 mg) levonorgestrel pharmacokinetics (PK) when combined with EFV-based ART.
Methods

• Participants
 • EFV-based ART ≥ 30 days with HIV-1 RNA ≤400 copies/mL
 • EFV 600mg daily + 2 NRTIs
 • Copper IUD as a second form of contraception

• Pharmacokinetic (PK) Sample Collection
 • LNG implants were inserted, one in each arm, on Day 0
 • Plasma samples were collected on Day 0 and Weeks 1, 4, 12, and 24 for LNG PK analysis
 • Validated LC-MS/MS method; assay calibration 50-1500 pg/mL
 • Area under the concentration time curve from entry to 24 weeks (AUC_{0-24weeks}) was calculated using the trapezoidal rule
Methods

• Genotyping
 • Real-time PCR based allelic discrimination assays for selected candidate SNPs
 • 3 CYP2B6 SNPs defined EFV normal, intermediate, and slow metabolizer phenotype

• Statistical Analysis
 • SNPs tested for Hardy-Weinberg equilibrium
 • Univariate and multivariate linear regression (P < 0.05) used to assess impact of genotype on LNG PK
 • Univariate linear regression (P < 0.05) to investigate correlations between EFV and LNG PK

Normal	516GG – 983TT – 15582CC
	516GG – 983TT – 15582CT
Intermediate	516GG – 983TT – 15582TT
	516GG – 983CT – 15582CC
	516GG – 983CT – 15582CT
	516GT – 983TT – 15582CC
	516GT – 983TT – 15582CT
Slow	516TT – 983TT – 15582CC
	516GT – 983CT – 15582CC
	516GG – 983CC – 15582CC

1 Haas et al. CROI 2019
Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, median (IQR)</td>
<td>33.0 (28.0 – 40.5)</td>
</tr>
<tr>
<td>Weight in kg, median (IQR)</td>
<td>58.0 (48.5 – 66.0)</td>
</tr>
<tr>
<td>SHBG* in nmol/L, median (IQR)</td>
<td>148.9 (98.4 – 185.5)</td>
</tr>
<tr>
<td>CYP2B6 Metabolizer Status</td>
<td></td>
</tr>
<tr>
<td>Normal, n (%)</td>
<td>8 (29%)</td>
</tr>
<tr>
<td>Intermediate, n (%)</td>
<td>15 (54%)</td>
</tr>
<tr>
<td>Slow, n (%)</td>
<td>5 (18%)</td>
</tr>
</tbody>
</table>

*CYP2B6 rs4803419 15582C→T was not in Hardy-Weinberg equilibrium ($\chi^2=11.75$), which may compromise its interpretation.

*Sex Hormone Binding Globulin
LNG Week 24 Concentrations and CYP2B6 Metabolizer Status

- Compared to normal CYP2B6 metabolizers at week 24:
 - Intermediate metabolizers: LNG ↓ 42%
 - Slow metabolizers: LNG ↓ 69%

<table>
<thead>
<tr>
<th>Status</th>
<th>Median pg/mL (IQR)</th>
<th>β-coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>534 (507 – 577)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>310 (279 – 346)</td>
<td>-0.21</td>
<td>5.16 x 10⁻⁵</td>
</tr>
<tr>
<td>Slow</td>
<td>167 (103 – 301)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multivariate adjusted model with Age, Weight, and SHBG
LNG AUC\(_{(0-24\text{ weeks})}\) and CYP2B6 Metabolizer Status

- Compared to normal CYP2B6 metabolizers
 LNG AUC\(_{(0-24\text{ weeks})}\):
 - Intermediate metabolizers: LNG ↓ 34%
 - Slow metabolizers: LNG ↓ 46%

<table>
<thead>
<tr>
<th>Status</th>
<th>Median pm*week/mL (IQR)</th>
<th>β-coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>13989 (12470 - 15432)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>9221 (8466-10617)</td>
<td>-0.15</td>
<td>2.26 x 10(^{-4})</td>
</tr>
<tr>
<td>Slow</td>
<td>7576 (3963-8474)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multivariate adjusted model with Age, Weight, and SHBG
For every 3.6 µg/mL ↑ in EFV, LNG ↓ 1 pg/mL at Week 24
Comparing LNG Standard and Double dose regimens
LNG PK Results with and without EFV-based ART

Historical Control Group:
LNG 150mg implant + ART-Naïve

Historical LNG 150mg Group:
LNG 150mg implant + EFV-based ART

- In women receiving EFV-based ART compared to the Control Group at week 48:
 - Double dose LNG ↓ 34%
 - Standard dose LNG ↓ 57%

Comparing CYP2B6 genotypes to a control group

- Normal metabolizers receiving double dose had similar LNG exposure to historical controls
 - Less than 5% decrease in LNG exposure
- Intermediate and slow metabolizers had statistically lower LNG than historical controls

Comparison	P-value*
Normal to ART-Naïve | 0.474
Intermediate to ART-Naïve | 0.014
Slow to ART-Naïve | 0.003

*Wilcoxon Rank Sum
Comparison of LNG Doses by Metabolizer Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>β-coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10} \text{AUC}_{(0-24 \text{ weeks})}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Dose</td>
<td>-0.18</td>
<td>1.65×10^{-3}</td>
</tr>
<tr>
<td>Doubled Dose</td>
<td>-0.16</td>
<td>1.04×10^{-3}</td>
</tr>
<tr>
<td>Comparison</td>
<td>GMR* (300mg:150mg)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>1.52</td>
<td></td>
</tr>
</tbody>
</table>

*Geometric Mean Ratio
Conclusions

• In women receiving 600mg EFV-based ART plus LNG implants:
 • Double dose (300mg) of LNG in participants with normal *CYP2B6* metabolizer status result in comparable LNG exposure to standard dose LNG (150mg) in mixed-genotype ART-naïve controls
 • Intermediate and slow *CYP2B6* metabolizer status is associated with lower LNG concentrations, irrespective of LNG dose

• We propose that higher EFV exposure results in increased induction of *CYP3A4*¹,²

• The potential for stratified LNG dosing based on *CYP2B6* genotype and EFV dose is worthy of further investigation

We gratefully acknowledge the dedication of the study participants and site personnel at the Infectious Diseases Institute, Makerere University for making this study possible.

Infectious Diseases Institute
Mohammed Lamorde
Concepta Merry
Shadia Nakalema
Pauline Byakika-Kibwika
Isabella Kyohairwe
Ritah Nakijoba
Leah Mbabazi
Ian Musinguzi
Florence Aber
Allan Buzibye
Henry Onen
Yvonne Kamara
Andrew Kambugu

University of Nebraska Medical Center
Courtney Fletcher
Anthony Podany
Sue Swindells
Sara Bares
Kayla Campbell
Lauren Cirrincione
Tim Mykris
Ravi Shetty Dyavar
Jon Weinhold
Lee Winchester

University of Liverpool
David Back
Marco Siccardi
Andrew Owen
Saye Khoo
Laura Else
Megan Neary
Owain Roberts

Northwestern University
Kristin Darin
Susan Cohn
Robert Murphy

University of Pittsburgh
Catherine Chappell

Research reported in this presentation was supported by the Eunice Kennedy Shriver NICHD under award number R01 HD085887 (PI Scarsi). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.