Viral and Immune Targets to cure HBV infection

Fabien Zoulim
Hepatology Department, Hospices Civils de Lyon
INSERM U1052, Cancer Research Center of Lyon
Lyon University, France
The global burden of chronic HBV infections

HBsAg prevalence
- High ≥ 8%
- Intermediate 2% to 7%
- Low < 2%

HCC prevalence

Flowchart:
1. HBV susceptible
2. Acute HBV
3. Chronic HBV
4. Cirrhosis / HCC

Treatment options:
- Vaccine
- Universal precautions
- Antiviral treatment

From A Lok, AASLD 2016
Current treatments: virus suppression and sustained disease control
(Why not treating more patients?)

- Decreased inflammation/fibrosis
- Decreased progression
- Reversal of fibrosis
- Decreased progression
- Decreased incidence but not eliminated
- HBsAg loss rate Max 10% after 5 years
- Life-long therapy

Barriers to eradicating HBV

- **cccDNA reservoir**
 - Long t1/2
 - Continuous replenishment
 - Not affected by NAs and IFN

- **Integrated forms**
 - HBV persistence

- **Defective CD8+ responses**
- **Defective B cell responses**
- **Inefficient innate response**
- **Defective immune responses**

Goals of future therapies to cure HBV infections

Therapy
- HBV DNA change from baseline (log 10 c/mL)
 - $0.0 - 1.0$
 - $2.0 - 3.0$
 - 4.0

Time
- HBsAg
- Partial Cure
- Functional Cure
- Virus suppression
- +/- Anti-HBsAb
- Sterilizing Cure

SERUM
- Anti-HBsAb

LIVER
- cccDNA

Cure

Access to care

Clinical development

Biomarkers

Antivirals

Immunotherapy

Drug Discovery
Curative approaches: Targeting the pool of cccDNA

Entry inhibitors
- Enveloped RC-DNA virion
- Inhibitors of HBsAg release

Controlling viral replication: Pré- and Post-cccDNA targets

Antiviral approaches

Immunomodulatory approaches

Targeting cccDNA

Targeting HBx

RNA interference

CpAMs “Capsid inhibitors”

NAs “Polymerase inhibitors”

Specific hepatocyte killing

Innate immunity modulation
- Toll-like receptor agonist
- RIG-1
- STINGs

Virus neutralization

Adaptive immunity modulation
- Anti-PD-1 mAb
- TCR engineering
- Vaccine therapy

Specific hepatocyte killing

Dysfunctional T-cell response

Insufficient B-cell response

Curing hepatocytes

IFNs and other antiviral cytokines

IL-12

pDC

NK

NKT

IL-1β

KC

IL-6

CpAM: core protein allosteric modulators; HBx: hepatitis B X protein; IFN: interferon; IL: interleukin; KC: Kupffer cells; mAb: monoclonal antibody; NA: nucleos(t)ide analogue; NK: natural killer; NKT: natural killer T cell; pDC: plasmacytoid dendritic cell; PD-1: programmed cell death-1; TCR: T cell receptor

Model for HBV entry in hepatocytes and development of entry inhibitors

Entry inhibitors

Myrcludex (pre-S1 peptide)
Blank et al, J Hepatol 2016
Bogomolov et al, J Hepatol 2016

Ezetimibe
Lucifora, Antiviral Res 2013

Proanthocyanidin
Tsukuda, Hepatology 2017

Cyclosporin analogues
Shimura, J Hepatol 2017
HBV conference, Taormina 2018

Li et al, elife 2012; Urban et al, Gastroenterology 2014
Myrcludex B with PEG-interferon α 2a: Safety and efficacy in patients with chronic HBV/HDV co-infection in a phase 2 trial (MYR203)

BACKGROUND & AIMS
- Myrcludex B (MyrB, Bulevirtide) is a first-in-class entry inhibitor for HBV/HDV infection
- In a phase 2 study MYR202, MyrB monotherapy led to HDV RNA decline and improvement of ALT levels
- End-of-treatment data from a MyrB ± PegIFNα2a 48 weeks combination study (MYR203) have been reported
- Here, the 24-week treatment-free follow-up data are presented

METHODS
- Primary endpoint: undetectable serum HDV RNA at Week 72 (w72)
- Secondary endpoints: ALT normalization, combined treatment response*, and HBsAg reduction >1 log₁₀

*≥2 log serum HDV RNA decline + normal ALT levels.
Median HDV RNA levels

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median log reduction</th>
<th>Week 48</th>
<th>Week 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG-IFNα</td>
<td>-1.30</td>
<td></td>
<td>-0.26</td>
</tr>
<tr>
<td>2mg MyrB + PEG-IFNα</td>
<td>-4.81</td>
<td></td>
<td>-4.04</td>
</tr>
<tr>
<td>5mg MyrB + PEG-IFNα</td>
<td>-5.59</td>
<td></td>
<td>-1.48</td>
</tr>
<tr>
<td>2mg MyrB</td>
<td>-2.84</td>
<td></td>
<td>-1.08</td>
</tr>
</tbody>
</table>

Primary endpoint:
undetectable HDV RNA at week 72

Two-tailed Fisher’s Test
- * p = 0.0209
- ** p = 0.0022
Pros & Challenges for entry inhibitors

Inhibition of new rounds of infection

Decrease the pool of cccDNA on the long term

Opportunity to treat HBV/HDV co-infections

Effect on NTCP and elevation of bile salts

Slow kinetics of cccDNA decay and slow hepatocyte turn-over; which combination with other DAAs?
Different classes of capsid assembly modulators

Heteroaryldipyrimidine derivatives (HAP)

Phenylpropenamide derivatives (AT series)

Compounds in evaluation

BAY41-4109
HAP-12
AT-130
NVR3-778
JNJ-6379
RO7049389
ABI-H0731
ABI-H0808
GLS4
GLP26
HAP_R01
SBA_R01
AB-423
AB-506
EP-027367

CpAMs inhibit viral genome replication and prevent cccDNA formation when administered prior to HBV inoculation.

CpAMs “Capsid inhibitors”

NUCs
“Polymerase inhibitors”

Capsid Assembly Modulators (CAMs)

JNJ-6379 PO OD x 28 d in non-cirrhotic HBeAg+ and HBeAg- CHB

- Well tolerated at increased dose
- Potent HBV DNA suppression with limited dose response at higher dose
- Higher dose may be required to prevent cccDNA replenishment
- Ongoing Phase 2 trial

No effect on HBeAg or HBsAg levels

Zoulim et al AASDL 2018, Abstract 74
Pros & challenges for CpAM

Decrease the pool of cccDNA on the long term

Other MoA?

Opportunity to combine with NUCs, pegIFN, other DAAs and immune interventions

Oral administration

Long-term safety profile

Mainly suppressive

How to combine with other approaches to be curative?
siRNA Candidate Development

- Lipid Nanoparticles for IV infusion
- GalNAc-Conjugate for subcutaneous administration

Wooddell et al, Science Transl Med, 2017
All patients receiving 3 monthly doses have achieved > 1 log reduction in HBsAg

<table>
<thead>
<tr>
<th>Mean HBsAg reductions from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg (C2b)</td>
</tr>
<tr>
<td>200 mg (C3b)</td>
</tr>
<tr>
<td>300 mg (C4b)</td>
</tr>
<tr>
<td>400 mg (C5b)</td>
</tr>
<tr>
<td>300 mg E+</td>
</tr>
<tr>
<td>NUC naive (C9)</td>
</tr>
<tr>
<td>300 mg E+</td>
</tr>
<tr>
<td>NUC exp (C9)</td>
</tr>
</tbody>
</table>

Shorter dosing intervals do not accelerate HBsAg decline

<table>
<thead>
<tr>
<th>Monthly dosing intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HBsAg reductions from baseline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shorter dosing intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HBsAg reductions from baseline</td>
</tr>
</tbody>
</table>

- JNJ-3989 rapidly reduces HBsAg to thresholds possibly associated with improved chances of HBsAg seroclearance in many patients, even after only 3 doses
 - 88% of patients achieved HBsAg <100 IU/mL
 - 100% of patients achieved ≥ 1.0 Log10 IU/mL HBsAg reduction

MF Yuen, et al, EASL ILC 2019
Pros & challenges for siRNA

Decrease of HBsAg
Potential for immune restoration?
Opportunity to combine with NUCs, pegIFN and other DAAs or immunotherapeutic approaches?

Parenteral administration
Long-term safety profile
Mainly suppressive
Impact of integrated sequences
How to combine with other approaches to be curative?

Other technologies under investigation

Antisense OGN: Billioud et al, J Hepatol 2016
Locked Nucleic Acids: Javanbakht et al, Mol Ther Nucleic Acids. 2018
RNA destabilizers: Mueller er al, J Hepatol 2018, Zhou et al, Antiviral Res 2018
Nucleic acid polymers (NAPs)

- **Nucleic Acid Polymers (NAP)** have entry and post-entry antiviral effects in HBV infection *in vitro.*

 Noordeen, F et al. AAC. 2013

Inhibition of HDV entry by preventing attachment of the virus to cell surface glycosaminoglycans

Belstein et al, J Virol 2018; Quinet et al, Hepatology 2018
Nucleic Acid Polymers (NAPs) – Reducing HBsAg

- NAPs block assembly/release of subviral particles
- Aim to restore immune response → viral control

Marked and seemingly durable HBsAg loss & gain of anti-HBs
Interesting…need to confirm ALT flares due to immune activation → plan for Phase 2 ACTG trial to clarify

Bazinet et al, AASLD 2018, Abstract 393
Pros & challenges for NAPs

Decrease of HBsAg

Immune restoration?

Opportunity to combine with NUCs, pegIFN and other DAAs

Mode of action under investigation

IV infusion

ALT exacerbation

Long-term safety profile
Restoration of antiviral immunity

The Oral Toll-Like Receptor-7 Agonist GS-9620 in Virally suppressed Patients with Chronic HBV Infection

Janssen et al, Journal of Hepatology, 2017
Inarigivir (RIG-I agonist) – a novel approach with dual antiviral activity

- Dose-dependent decline in HBV DNA & HBV RNA > in HBeAg-neg patients and those with low qHBsAg levels
- HBV RNA effects persisted after cross-over to tenofovir – ‘new set-point’? **Interesting proof-of-concept**

Yuen et al, AASLD 2018, Abstract 75
Inarigivir Acts Through Modulation of the Innate Immune System Involving RIG-I

Novel mechanism of action

- Actively transported into hepatocytes via OATP-1 and OAT-1 with 30:1 liver to plasma ratio
- Binds to RIG-I and causes induction of IFN signaling
- Demonstrated activation of immune system in HCV patients and healthy volunteers at 400mg daily
- DAA effect to prevent interaction of HBV Pol and pgRNA in cell systems
- Active against polymerase and capsid resistant strains
- Activates “host” targets instead of viral targets – potential for higher barrier to viral resistance

ACHIEVE Phase 2 Dose Escalation Study

Inarigivir monotherapy 12 weeks followed by switch to Tenofovir 300 mg for 12 weeks

<table>
<thead>
<tr>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inarigivir - 25 mg</td>
<td>Inarigivir - 50 mg</td>
<td>Inarigivir - 100 mg</td>
<td>Inarigivir - 200 mg</td>
</tr>
<tr>
<td>Placebo</td>
<td>Tenofovir 300 mg daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Up to 80 non-cirrhotic HBV subjects, randomized 4:1 between inarigivir and placebo.

All patients switch to tenofovir 300 mg monotherapy.
Primary Endpoint: Mean Change from Baseline in HBV DNA to Week 12 in Placebo (PL) and IRIG cohorts

Secondary Endpoint: Mean Change from Baseline in HBV RNA to Week 12 in Placebo (PL) and IRIG cohorts

HBeAg negative patients: Change from Baseline in HBV DNA at Week 12 and Week 24

- **P < 0.01:** IRIG 100mg and 200mg versus PL
- **18 of 22 (82%) patients undetectable at week 24**

HBeAg negative patients: Change from Baseline in HBV RNA at Week 12 and Week 24

- **P = 0.05:** All cohorts combined versus PL at week 12
- **3 placebo and 6 IRIG undetectable HBV RNA at baseline. 1 placebo became replicative and detectable at week 12**

Inarigivir ACHIEVE trial in chronic HBV patients
PD-1 blockade enhances HBV-specific T cell function

In liver and blood

With differential impact based on HBeAg status

Fisicaro P; Gastroenterol 2010; 138: 682

Park J, Gastroenterol 2016; 150: 684
Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B

GS-4774 is a heat-inactivated, yeast-based, T-cell vaccine designed to elicit HBV-specific T-cell responses

Lok et al, J Hepatol 2016
A Phase 1 Study Evaluating Anti-PD-1 Treatment With or Without GS-4774 in HBeAg Negative Chronic Hepatitis B Patients

![Graph showing treatment outcomes](image)

- Virally-suppressed, HBeAg negative CHB patients (single center New Zealand)

- 2/22 (9%) at Week 12 and 3/22 (14%) at Week 24 with a >0.5 log10 reduction in HBsAg

Gane et al, EASL ILC 2017 PS-044
Curative approaches: Targeting the pool of cccDNA

Entry inhibitors
- Inhibitors of HBsAg release

Controlling viral replication:
- Post-cccDNA targets

Antiviral approaches
- Targeting cccDNA
- Targeting HBx
- RNA interference

Immunomodulatory approaches
- CpAMs “Capsid inhibitors”
- NAs “Polymerase inhibitors”

Curing hepatocytes
- IFNs and other antiviral cytokines
- Innate immunity modulation
 - Toll-like receptor modulation
 - RIG-I
 - STINGs
- Adaptive immunity modulation
 - Anti-PD-1 mAb
 - TCR engineering
 - Vaccine therapy
- Specific hepatocyte killing
- Virus neutralization

CpAM: core protein allosteric modulators; HBx: hepatitis B X protein; IFN: interferon; IL: interleukin; KC: Kupffer cells; mAb: monoclonal antibody; NA: nucleos(t)ide analogue; NK: natural killer; NKT: natural killer T cell; pDC: plasmacytoid dendritic cell; PD-1: programmed cell death-1; TCR: T cell receptor

Towards combined therapies

- **Combination of CpAm + RNA destabilizer + NUC**

 HDI mouse model

 Gindin Y, et al. ILC 2018, #3503 (PS-027)

- **Combination of CpAM and TLR-7 agonist**

 AAV-HBV mouse model

 Gao L, et al. ILC 2018, #4008 (PS-028)

- **RIG-I agonist (Inarigivir) and NUCs**

 Clinical trial

 Walsh R, et al. ILC 2018, #2694 (PS-160)

- **SiRNA followed by therapeutic vaccination**

 AAV-HBV mouse model

 Michler T, et al. ILC 2018, #1044 (PS-025)
HBV cure - New treatment concepts – Will we need combination of DAA and immune therapy?

- Antivirals
- Therapy
- Immune restoration
- Check point inhibitors
- TLR agonist
- Tx Vaccine
- NUC
- Capsid
- SiRNA Ag load
- HBVDNA
- HBsAg
- Anti-HBsAb
- cccDNA

Testoni et al, Liver International 2017
Need for Novel Biomarkers to Assess Target Engagement and Treatment Endpoints

Innovations and novel perspectives for cure

- cccDNA biology and targeting strategies

 Koh et al, Gastroenterology 2018

 Gao et al, EASL ILC 2019

T cell engineering and immunotherapy

Koh et al, Gastroenterology 2018
Acknowledgements

Hepatology Unit

Francois Bailly
Samir Benmaklouf
Miroslava Subic
Kerstin Hartig
Fanny Lebossé
Massimo Levrero
Marianne Maynard
Sylvie Radenne
Caroline Scholtes
Christian Trépo

Barbara Testoni
Julie Lucifora
David Durantel
Bernd Stadelmeyer
Guada Martinez
Maelle Locatelli
Fleur Chapus
Aurore Inchauspé
Maud Michelet
Judith Fresquet

Doohyun Kim
Delphine Bousquet
Caroline Charre
François Villeret
Romain Parent
Anna Salvetti
Birke Bartosch
Eve Pecheur
Boyan Grigorov
Jennifer Molle
Françoise Berby
Isabelle Bordes
Christophe Combet

INSERM U1052

FL. Cosset, Lyon CIRI
A. Boyd, Paris
F. Carrat, Paris
C. Ferrari, Parma
P. Lampertico, Milan
A. Craxi, Palermo
JP Quivy, Institut Curie
G. Almouzni, Institut Curie
M. Dandri, Hamburg
XX Zhang, Shanghai
G. Papatheodoridis, Athens

Collaborations

Agence autonome de l'Inserm

DEVweCAN