Epidemiological study of Doravirine associated resistance mutations in HIV-1-infected antiretroviral-experienced patients from two large databases in France and Italy

Cathia Soulie, Maria Mercedes Santoro, Alexandre Storto, Charlotte Charpentier, Daniele Armenia, Federica Forbici, Ada Bertoli, William Gennari, Massimo Andreoni, Cristina Mussini, Andrea Antinori, Carlo Federico Perno, Vincent Calvez, Francesca Ceccherini-Silberstein, Diane Descamps, Anne-Genevieve Marcelin.

Abstract # 9
17th EU Meeting on HIV & Hepatitis (22-24 May, 2019)
Conflit of interest declarations

- **AG Marcelin** has no commercial interests.

- **AG Marcelin** has received travel grants, honoraria, and study grants from various pharmaceutical companies including Gilead Sciences, Merck-Sharp & Dohme-Chibret, Jansen and ViiV Healthcare.

- **AG Marcelin** prepared the content of this presentation using his own material with no commercial input.

- **AG Marcelin** may discuss cases and circumstance when drugs are used off label; this is his own personal clinical experience. For the proper use of medications, please review the Product Monographs.
Intensive scale-up of antiretrovirals worldwide for HIV has led to a dramatic decrease in HIV-1 related morbidity and mortality.

Despite these successes, the expansion of treatment has been accompanied by a significant increase in the prevalence of both acquired and transmitted HIV drug resistance.

The increasing prevalence of resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs):

- Could be due to their large prescription until recently as a third recommended agent combined to a low genetic barrier
- Especially true in sub-Saharan Africa as a result of the extensive use of efavirenz and nevirapine.
Background (2)

- Doravirine (DOR) is a novel HIV-1 NNRTI that has been recently approved.

- DOR has an *in vitro* resistance profile that is distinct from other NNRTIs retaining activity against viruses containing the most frequently transmitted NNRTI mutations, K103N, E138K, Y181C and G190A.¹

- DOR selects for distinct mutations *in vitro*, including mutations at positions 106, 108, 221 and 227 with multiple mutations required for significant levels of resistance.²

¹ Feng et al. AAC 2016 Mar 25;60(4):2241-7
² Feng et al. AAC 2015 Jan;59(1):590-8
Background (3)

- It has been recently shown that DOR in combination therapy has non-inferior efficacy to darunavir/r (800/100 mg) or efavirenz in treatment-naïve patients (DRIVE-FORWARD and DRIVE-AHEAD). ¹, ²

- Switch to DOR/3TC/TDF maintains virological suppression through 48 weeks (DRIVE-SHIFT trial). ³

- There has been limited investigation of the prevalence of mutations associated with resistance to DOR in NNRTI-experienced patients.

¹ Molina et al., Lancet HIV. 2018 May;5(5):e211-e220.
³ Kumar, IDweek 2018, October 3-7, San Francisco, USA
Objectives

The aims of this study were:

• To examine the prevalence of DOR resistance associated mutations in HIV-1-infected ARV-treated patients in France and Italy,

• To compare this prevalence to those known for other NNRTIs (Efavirenz, Rilpivirine, Nevirapine and Etravirine),

• To compare the predicted genotypic resistance within this class of antiretrovirals.
Methods (1)

• Resistance genotypic tests were performed at five reference laboratories:

 • 2 in Paris, France (Pitié-Salpêtrière and Bichat Claude Bernard hospitals),
 • 3 in Italy (University of Rome Tor Vergata, INMI Spallanzani-IRCCS, Modena Hospital).

• A total a 9199 reverse transcriptase sequences obtained between 2012 and 2017 from HIV-1 ARV-treated patients in routine clinical care were analyzed:

 ➢ NNRTI-failing, n=381
 ➢ Efavirenz, n=189
 ➢ Etravirine, n=32
 ➢ Nevirapine, n=66
 ➢ Rilpivirine, n=94
Methods (2)

• DOR resistance associated mutations used to define DOR resistance in this study were: RT V106A/M, V108I, Y188L, G190S, F227C/L/V, M230I/L, L234I, P236L, K103N+Y181C, K103N+P225H, K103N+L100I.

• The NNRTIs mutations associated with resistance to Efavirenz (EFV), Rilpivirine (RPV), Nevirapine (NVP) and Etravirine (ETV) are those listed in the ANRS algorithm (www.hivfrenchresistance.org), Stanford algorithm (https://hivdb.stanford.edu/), and in the IAS list of mutations (www.iasusa.org).

• Resistance interpretation was made using the Smartgene® Integrated Database Network System.
Results (1): HIV-1 subtypes

• A total of 9199 RT sequences were analyzed.

• The distribution of subtypes was: 45.3% B and 54.7% non B.
Results (2): DOR resistance associated mutations

• The overall prevalence of RT sequences with at least 1 DOR-associated mutation was 12.2% (n = 1119).

• Among the DOR-associated mutations, the most frequent mutations were (> 1,5% up to 3,9%):
 V108I (n=307), M230I/L (n=256), K103N+Y181C (n=361), K103N+P225H (n=264) and K103N+100I (n=156).

• The other were very rare (< 1,5%):
 V106A/M (n=77), Y188L (n=107), G190S (n=24), F227C/L/V (n=49), L234I (n=13), P236L (n=0).
Results (3): other NNRTIs resistance associated mutations

- In comparison, the most frequent common NNRTIs resistance mutations were:
 V90I (n=580), K103N/S (n=934), E138A/G/K/Q/R (n=1001), Y181C/H/L (n=521) and G190A/E/S (n=258).
Among the DOR-associated mutations, the most frequent mutations were:

- V106A/M (n=10), V108I (n=35), Y188L (n=10),
- G190S (n=8), K103N+Y181C (n=15),
- K103N+P225H (n=18) and K103N+100I (n=15).

The other were very rare:

- F227C/L/V (n=7), M230I/L (n=0), L234I (n=2),
- P236L (n=0).

In comparison, the most frequent common NNRTIs mutations were:

- V90I (n=34), K103N/S (n=109),
- E138A/G/K/Q/R (n=48), Y181C/H/L (n=54) and
- G190A/E/S (n=34).

Results (4): NNRTI-failing group (n=381)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>DOR Prevalence (%)</th>
<th>Common NNRTIs Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V106A/M</td>
<td>2.6</td>
<td>9.2</td>
</tr>
<tr>
<td>V108I</td>
<td>2.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Y188L</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Y181C</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>G190S</td>
<td>3.9</td>
<td>4.7</td>
</tr>
<tr>
<td>K103N</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>K103N+Y181C</td>
<td>28.6</td>
<td>12.6</td>
</tr>
<tr>
<td>K103N+P225H</td>
<td>8.9</td>
<td>14.2</td>
</tr>
<tr>
<td>K103N+100I</td>
<td>8.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>

- **DOR**
- **common NNRTIs**
Results (5): genotypic interpretation of resistance

- The DOR resistance was lower than other NNRTIs resistance (p<0.001)

- The DOR resistance was lower than
 - EFV, NVP and RPV with ANRS algorithm (p<0.001),
 - EFV and NVP with Stanford algorithm (p<0.001).

ANRS algorithm (www.hivfenresistance.org); Stanford algorithm (https://hivdb.stanford.edu)
Conclusions

• The prevalence of DOR resistance associated mutations in HIV-1-infected ARV-treated patients in Italy and France was low (12.2%).

• The prevalence of DOR resistance was significantly lower than:
 - the other NNRTIs in this whole set of sequences,
 - the first generation NNRTIs in the subgroup of NNRTI-failing patients and also RPV according to the ANRS algorithm.

• These results support potential DOR use even in NNRTI-experienced patients as the prevalence of mutations conferring resistance to DOR remains low in patients presenting mutations against the NNRTIs currently in use.

• Previous EFV and ETR experience has been associated with a higher risk of DOR resistance

• However, the role of DOR in vivo must be confirmed by clinical observations in such patients

• Clinical studies are warranted to better define the resistance patterns of DOR

1 Sterrantino et al. IJAA 2019
Pitié-Salpêtrière
UMR 1136 Paris
Pr Vincent Calvez
Dr Marc Wirden
Dr Eve Todesco
Dr Cathia Soulie
Dr Aude Jary
Isabelle Malet
Nathalie Desire
Sophie Sayon
Valentin Leducq
Basma Abdi
Adélie Gothland
Dr Sidonie Lambert-Niclot
Pr L Morand-Joubert

Bichat Claude Bernard
Paris
Pr Diane Descamps
Dr Charlotte Charpentier
Alexandre Storto

Italy Roma
Pr Carlo Federico Perno
Pr Francesca Ceccherini-Silberstein
Pr Massimo Andreoni
Dr Maria Mercedes Santoro
Dr Domenico Di Carlo
Dr Daniele Armenia
Dr Ada Bertoli
Dr Caterina Gori

Modena
Pr Cristina Mussini
Dr William Gennari
Dr Vanni Borghi