A PENILE MODEL IN Rhesus Macaques
To Assess Pharmacokinetics and Characterization of HIV Target Cells within Anatomical Compartments of Penile Tissue

Presented by
Alison Swaims Kohlmeier Ph.D.

Laboratory Branch, Division of HIV/AIDS Prevention
Centers for Disease Control and Prevention
Acknowledgements

Division of HIV Prevention Lab Branch
Walid Heneine

Antiretroviral Prophylaxis Team
Charles Dobard
Kenji Nishiura
Sunita Sharma
Natalia Makarova
Mara Sterling
Mian-er Cong
Gerardo Garcia-Lerma

Analytical Chemistry Unit
Amy Martin
Chuong Dinh
Angela Holder

Preclinical Evaluation Team
David Garber
Debbie Adams
James Mitchell
Shanon Ellis
Frank Deyounks
Kristen Kelley
Ryan Johnson
Janet McNicholl

Disclaimer: The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the Centers for Disease Control and Prevention.
Penile transmission

- Penile transmission accounts for nearly half of all HIV infections globally\(^1\)
- The mechanisms of HIV penile acquisition are poorly understood
 - Inner foreskin, and urethra are likely entry points for HIV
 - Condoms and medical male circumcision practices can effectively reduce HIV infection in men
- Oral Truvada (TDF/FTC) protected heterosexual men in Partners PrEP and TDF-2 (80-84% efficacy)\(^2\text{-}\text{3}\)
- Preclinical animal models of penile transmission are needed
 - Investigate mechanisms of penile transmission
 - Identify sanctuary HIV target sites in penile tissue
 - Inform on biomedical penile prevention interventions

3-Thigpen M (2012)
Rhesus macaque model of penile SHIV transmission

- Similar approach to rectal and vaginal SHIV transmission models
 - Repeated low-dose SHIV challenges

- Dual compartment exposures
 - Urethra
 - Prepuce pouch

No-contact inoculation

Median (2.5)

93% Efficacy

Model validated with human-equivalent dosing w/ oral FTC/TDF (Dobard, CROI 2018)

Objectives

- Comprehensive immune characterization of HIV target cells in foreskin and urethra tissue

- Pharmacokinetic (PK) assessment in penis tissues following human-equivalent oral FTC/TDF dosing in macaques
Immune characterization of HIV target cells in penile tissue

Enrichment method

Gentle enzymatic digestion → Percoll Gradient → enriched leukocytes

Cell characterization
- CD4 and CD8 T cells
- B cells
- NK cells
- Monocytes
- Conventional dendritic cells (CDC)
- Plasmacytoid dendritic cells (PDC)

Picture adapted from http://www.medicitalia.it/public/uploadedfiles/minforma/luigilaino_hiv_circoncisione_laino.jpg
Cellular immune barrier landscapes at urethral and foreskin barriers

Highly enriched local immune populations in foreskin and urethral tissues

Picture adapted from Farber D, Cell Rep, 2017
Cellular immune barrier landscapes at urethral and foreskin barriers

Increased frequency of inflammatory mediators in urethral barrier
Increased HIV target cells in foreskin and urethra tissues compared to blood

Higher expression of activation markers HLA-DR and fractalkine receptor in target cells in urethra tissue
Urethral and inner foreskin barriers: susceptibility following SHIV challenge

The urethral barrier exhibits greater vulnerability to SHIV infection
Penile PK assessment in humans and macaques

Human and Macaques

- Oral Truvada (FTC/TDF)
 - Human (n=7); 200/300 mg
 - Macaques (n=5); 20/22 mg/kg

- Collect urethra swabs 4 and 24 hours post dosing

- TFV and FTC levels (ng/swab)

Macaques

- Collect penile tissues at necropsy 24 post dosing
 - Isolate lymphocytes from urethral and foreskin tissue
 - Measure intracellular TFV-DP

TFV-DP associated with \textit{in vivo} efficacy
Conclusions

- **Defined differences in immune cell composition in urethral and foreskin tissues**
 - Distinct barrier compositions in urethral compared to foreskin tissues defined by increased inflammatory function and peripheral immune surveillance
 - Consistent with penile transmission studies in macaques, findings suggest urethral barrier is more vulnerable to SHIV infection than the foreskin barrier

- **Validated urethra sampling methods in macaques to assess penile PK**
 - Similar drug penetration in urethra secretions in humans and macaques following oral TDF/FTC dosing
 - High concentrations of TFV-DP in both urethral and foreskin tissues support the protective efficacy seen with oral TDF regimens