HCV Resistance – Clinical Aspects

Sanjay Bhagani
Royal Free Hospital/UCL
London
DAAs in 2018, and beyond...

Protease-Inhibitors „...previrs“
- Paritaprevir/r
- Asunaprevir
- Grazoprevir
- Glecaprevir

Non-Nucs

Polymerase-Inhibitors „...buvirs“
- Voxilaprevir
- Grazoprevir
- Simeprevir
- Sofosbuvir
- Uprifosbuvir
- AL-335

NS5A-Inhibitors „...asvirs“
- Ombitasvir
- Daclatasvir
- Elbasvir
- Pibrentasvir
- Sofosbuvir
- Ledipasvir
- Velpatasvir
Changing characteristics of patients treated with DAA over time

Prospective, multicenter cohort of DAA-based therapy from 9 sites in Germany

Baseline characteristics of HCV patients started DAA therapy over time

There has been a shift to younger, treatment-naïve and patients with IVDU

Antiviral effectiveness has increased over time, but there has been an increase in LTFU

Christensen, EASL 2018, THU-358
Italian Real-World Data

Effectiveness of 12 weeks SOF/VEL without RBV in Patients with or without Cirrhosis

Real world study of 909 GT 1-4 patients treated with SOF/VEL for 12 weeks

Baseline Demographics

<table>
<thead>
<tr>
<th>N=909</th>
<th>Male, %</th>
<th>Mean age (18-90)</th>
<th>GT %</th>
<th>Fibrosis %</th>
<th>PWID, %</th>
<th>Prior PegIFN Tx, %</th>
<th>Diabetes, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, %</td>
<td>59</td>
<td></td>
<td>1</td>
<td>39</td>
<td>24</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Mean age</td>
<td>63.4</td>
<td>(18-90)</td>
<td>2</td>
<td>41</td>
<td>31</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>GT %</td>
<td></td>
<td></td>
<td>3</td>
<td>17</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrosis %</td>
<td></td>
<td></td>
<td>F0-F1</td>
<td>24</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0-F1</td>
<td></td>
<td></td>
<td>F2</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
<td>F3</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
<td>F4</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWID, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior PegIFN Tx, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SVR 12 Rates

<table>
<thead>
<tr>
<th></th>
<th>Overall (ITT)</th>
<th>GT 1</th>
<th>GT 2</th>
<th>GT 3</th>
<th>GT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR 12, %</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>N=909</td>
<td>903</td>
<td>350</td>
<td>152</td>
<td>370</td>
<td>155</td>
</tr>
<tr>
<td>N=909</td>
<td>909</td>
<td>353</td>
<td>154</td>
<td>371</td>
<td>156</td>
</tr>
<tr>
<td>Advanced Fibrosis/Cirrhosis</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>N=909</td>
<td>152</td>
<td>154</td>
<td>156</td>
<td>157</td>
<td>86</td>
</tr>
<tr>
<td>N=909</td>
<td>155</td>
<td>156</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=29</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 weeks SOF/VEL without RBV achieves high SVR rates regardless of fibrosis stage and genotype

Mangia, EASL 2018, THU-323
‘Real World’ co-infected patients – ANRS CO13 HepaVIH cohort

Piroth, J Hepatol. 2017
Patient 1 (MM)

- HIV+ MSM
- Well-controlled HIV-infection
 - On Truvada/Raltegravir
 - CD4 650, vl < 40 c/mL
- Acute G1a HCV diagnosed in November 2017
- Failure to clear virus spontaneously predicted by ‘week 4 rule’
- Keen on early treatment
- Enrols on RCT of 6 vs. 12 weeks of SOF/VEL
- Week 6 HCV RNA – undetectable
- ‘Relapse’ by week 4 end of treatment
- G1a, clonal sequencing E/NS3/4 regions - >90% homology to original virus
Patient 2 (MN)

- HIV+ MSM
- Well-controlled HIV/HBV co-infection
 - Truvada + Dolutegravir (previous raltegravir)
- Acquires HCV (G1a) in 2007 – relapse post 24 weeks of PegIFN and ribavirin for early HCV
- 2014 – C-P A cirrhosis, platelets 105, albumin 35, AFP 15
- NHS E treatment – 12 weeks of PRoD + R
- ‘Breakthrough’ at week 8
• Who is likely to fail?
• Who is likely to fail with RASs?
• What mutations are most likely and what is their significance?
• What options are available to treat patients with resistance?
Considerations for DAA Regimen Failure

- **Therapy**
 - DAA classes
 - RBV
 - Duration

- **Patient**
 - Cirrhosis
 - BMI
 - Renal disease

- **Resistance**

- **Others**
 - Adherence
 - Drug interactions
Impact of Multiple Negative Predictors on Response

- Retrospective analysis of phase II/III studies of SOF + RBV ± pegIFN in pts with GT1-3 HCV (N = 871)

Negative Predictors:
- Treatment experienced
- Cirrhosis
- HCV RNA
- Male
- ≥ 75 kg
- IL28B non-CC
- NS5A RASs?

Number of Negative Predictors

HCV TARGET: Predictors of HCV DAA Failure

- Prospective, observational cohort study of real-world clinical practice
 - N = 4099 pts with GT1 HCV treated with oral therapy including ≥ 2 DAAs
 - SVR: 93.7%; no SVR: 6.3%

- Factors independently associated with lack of SVR
 - Logistic linear regression: cirrhosis, time of treatment start
 - Multivariate logistic regression: cirrhosis, low albumin, low platelet count, high total bilirubin, male sex, older age

- Inverse probability weighting by propensity scores identified lower likelihood of SVR with SMV + SOF vs LDV/SOF or OBV/PTV/RTV + DSV (all ± RBV)
 - Limited data available on Q80K presence

- 19 of 22 pts retreated with LDV/SOF or OBV/PTV/RTV + DSV ± RBV achieved SVR

Do baseline RASs have an impact?

• Very much dependent on the ‘barrier to resistance’ of initial regimen
 – In association with viral load, genotype, length of therapy, patient characteristics

Exemplified by
• Grazoprevor/Elbasvir for G1a patients
• PrOD + R for compensated cirrhotic G1a patients
NS5A RAVS had no impact on SVR in patients with HCV GT1b infection

*any variant at positions 28, 30, 31, and 93
†Resistance analysis population which includes all patients with baseline sample sequence and an outcome of virologic failure or SVR
Resistance Associated Variants: NS5A

(Resistance analysis population†)

<table>
<thead>
<tr>
<th>Genotype 1a RAVS</th>
<th>RAV Status in Patients with Baseline Sequence % (n/m)</th>
<th>SVR12 All Patients % (N/n)</th>
<th>SVR12 NS5A RAVs ≤5-fold potency loss</th>
<th>SVR12 NS5A RAVs >5-fold potency loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline NS5A RAVS</td>
<td>12% (19/154)</td>
<td>58% (11/19)</td>
<td>90%</td>
<td>22%</td>
</tr>
<tr>
<td>No baseline NS5A RAVs</td>
<td>86% (112/130)</td>
<td>100% (112/112)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype 1b RAVS</th>
<th>RAV Status in Patients with Baseline Sequence % (n/m)</th>
<th>SVR12 All Patients % (N/n)</th>
<th>SVR12 NS5A RAVs ≤5-fold potency loss</th>
<th>SVR12 NS5A RAVs >5-fold potency loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline NS5A RAVS</td>
<td>14% (18/130)</td>
<td>94% (17/18)</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>No baseline NS5A RAVs</td>
<td>86% (112/130)</td>
<td>100% (112/112)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

All patients with virologic failure had baseline HCV RNA of > 800,000 IU/mL
TURQUOISE-II Results: ITT SVR12 Rates by HCV Subtype

<table>
<thead>
<tr>
<th>HCV Subtype</th>
<th>12-week arm</th>
<th>24-week arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 1a</td>
<td>88.6%</td>
<td>94.2%</td>
</tr>
<tr>
<td>GT 1b</td>
<td>98.5%</td>
<td>100%</td>
</tr>
</tbody>
</table>

3D + RBV

124/140 114/121
67/68 51/51

Adapted from the Fred Poordad presentation at ILC/EASL on April 12, 2014
TURQUOISE-II Results: ITT SVR12 Rates by Surrogates of Portal Hypertension and Hepatic Function

![Graph showing SVR12 rates by surrogates of portal hypertension and hepatic function.](image_url)

Adapted from the Fred Poordad presentation at ILC/EASL on April 12, 2014
Different treatment recommendations for these relatively lower genetic-barrier regimens

- **G/E for G1a**
 - Baseline RAS testing if vl >800 000 IU/mL
 - If Ns5a RAS with >5 fold efficacy effect (substitutions at positions 28, 30, 31, 58 and 93) OR not available – G/E + R for 16 weeks

- **PrOD + R for G1a compensated cirrhotics**
 - 24 weeks if platelets <90, albumin <35 or AFP >20
Resistance Analysis from the ASTRAL Program

ASTRAL 1–3 (SOF/VEL)

GT1–6

<table>
<thead>
<tr>
<th>NS5A Class RAVs</th>
<th>15% Cut Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>701/709</td>
</tr>
<tr>
<td>69%</td>
<td>n=709</td>
</tr>
<tr>
<td>31%</td>
<td>n=314</td>
</tr>
<tr>
<td>98%</td>
<td>309/314</td>
</tr>
</tbody>
</table>

VEL-Specific RAVs

<table>
<thead>
<tr>
<th>15% Cut Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
</tr>
<tr>
<td>92%</td>
</tr>
<tr>
<td>8%</td>
</tr>
<tr>
<td>95%</td>
</tr>
</tbody>
</table>

ASTRAL 4 (SOF/VEL + RBV)

GT1–4

<table>
<thead>
<tr>
<th>NS5A Class RAVs</th>
<th>15% Cut Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
<td>65/68</td>
</tr>
<tr>
<td>80%</td>
<td>n=68</td>
</tr>
<tr>
<td>20%</td>
<td>n=17</td>
</tr>
<tr>
<td>100%</td>
<td>17/17</td>
</tr>
</tbody>
</table>

VEL-Specific RAVs

<table>
<thead>
<tr>
<th>15% Cut Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
</tr>
<tr>
<td>94%</td>
</tr>
<tr>
<td>6%</td>
</tr>
<tr>
<td>100%</td>
</tr>
</tbody>
</table>

Patients with baseline RAVs

Patients without baseline RAVs

Hezode, EASL 2016, Poster THU-216
Prevalence of RAVs in DAA-Naïve Patients

European RAVs Database

GT1a

- **NS3**
 - Frequency of RAVs: 34% (pts. with RAVs)
 - EC50 fold change: 10
 - Variants: Q80K/R, R155K/T, G169A, D168N

GT1b

- **NS3**
 - Frequency of RAVs: 3% (pts. with RAVs)
 - EC50 fold change: (not specified)

- **NS5A**
 - Frequency of RAVs: 13% (pts. with RAVs)

- **NS5B**
 - Frequency of RAVs: 53% (pts. with RAVs)
 - EC50 fold change: (not specified)

Dietz, EASL 2016, Oral PS-007
Resistance Characteristics of HCV Antiviral Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Antiviral Potency</th>
<th>GT Activity</th>
<th>Resistance Barrier</th>
<th>FDA Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS3 protease inhibitor</td>
<td>+++ to ++++</td>
<td>1, 4</td>
<td>Low to high</td>
<td>Simeprevir (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(± 2, 3, 6)</td>
<td></td>
<td>Paritaprevir (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grazoprevir (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Voxilaprevir (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glecaprevir (2017)</td>
</tr>
<tr>
<td>NS5B nucleotide</td>
<td>++++</td>
<td>1-6</td>
<td>Very high</td>
<td>Sofosbuvir (2013)</td>
</tr>
<tr>
<td>NS5B non-nucleoside</td>
<td>++</td>
<td>1</td>
<td>Low</td>
<td>Dasabuvir (2014)</td>
</tr>
<tr>
<td>NS5A inhibitor</td>
<td>++++</td>
<td>1, 4, 6</td>
<td>Low to high</td>
<td>Ledipasvir (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(± 2, 3)</td>
<td></td>
<td>Daclatasvir (2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ombitasvir (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elbasvir (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Velpatasvir (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pibrentasvir (2017)</td>
</tr>
</tbody>
</table>
Key HCV Resistance Concepts

• HCV resistance-associated substitutions
 – Enriched in pts experiencing DAA treatment failure
 – Has an impact on treatment response in specific situations
• HCV resistance is NOT absolute
• Some pt characteristics are just as important as RASs
• Future regimens appear to obviate the need for most resistance testing at baseline
Durability of Treatment-Emergent NS5A RASs

EBR/GZR ± RBV

Detectable RASs (%)

Wks Post VF

Broad Cross-Resistance With “Early-Generation” NS5A Inhibitors

<table>
<thead>
<tr>
<th>Fold Change</th>
<th>Genotype 1a</th>
<th>Genotype 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M28T</td>
<td>Q30R</td>
</tr>
<tr>
<td>Ledipasvir</td>
<td>20x</td>
<td>> 100x</td>
</tr>
<tr>
<td>Ombitasvir</td>
<td>> 1000x</td>
<td>> 100x</td>
</tr>
<tr>
<td>Daclatasvir</td>
<td>> 100x</td>
<td>> 1000x</td>
</tr>
<tr>
<td>Elbasvir</td>
<td>20x</td>
<td>> 100x</td>
</tr>
<tr>
<td>Velpatasvir</td>
<td>< 10x</td>
<td>< 3x</td>
</tr>
<tr>
<td>Pibrentasvir</td>
<td>< 3x</td>
<td>< 3x</td>
</tr>
<tr>
<td>Ruzasvir</td>
<td>< 10x</td>
<td>< 10x</td>
</tr>
</tbody>
</table>

Slide credit: clinicaloptions.com
NS5A Resistance Selection Rate Upon Virologic Failure

- Varies by regimen and duration
- PI based:
 - EBR/GZR: 94%[1]
 - OBV/PTV/RTV + DSV: 68%[2]
- Nucleotide based:
 - LDV/SOF: 75%[3]
 - SOF/VEL: 93% (14/15; majority GT3)[4]
 - SOF/VEL/VOX (≤ 6 wks): 0% (n = 15)[5]
 - SOF + EBR/GZR (≤ 8 wks): 37% (n = 30)[6]

References

References in slidenotes.

NS5A RAS Detection Among Pts With VF in LDV/SOF Phase II/III Trials[3]

<table>
<thead>
<tr>
<th>Treatment Duration (Wks)</th>
<th>Pts With NS5A RASs at VF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>37.5</td>
</tr>
<tr>
<td>8</td>
<td>66.7</td>
</tr>
<tr>
<td>12</td>
<td>94.7</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>n/N =</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3/14</td>
</tr>
<tr>
<td>21</td>
<td>14/21</td>
</tr>
<tr>
<td>19</td>
<td>18/19</td>
</tr>
<tr>
<td>3</td>
<td>3/3</td>
</tr>
</tbody>
</table>
HCV Resistance – concepts (2)

- NS5a substitutions persist
- Cross-resistance amongst first/second generation NS5a inhibitors
- Short(er) duration of therapy less likely to result in selection of RASs in regimens with high(er) barrier – especially in the presence of SOF
So what about our two patients?

Where they destined to fail?
Are they likely to have RASs?
Patients MM and MN

MM
- G1a
- Early HCV – viral load 2 million IU/ml
- Short duration therapy with Sof + Vel

MN
- G1a
- Compensated cirrhosis
- Viral load 120 000 IU/ml
- Platelets 100, albumin 35, AFP <20
- 12 weeks PrOD + R
Patients MM and MN

MM
- G1a
- Early HCV – viral load 2 million IU/ml
- Short duration therapy with Sof + Vel
- Efficacy of short duration therapy with Sof + Vel in patients with a high viral load?

MN
- G1a
- Compensated cirrhosis
- Viral load 120 000 IU/ml
- Platelets 100, albumin 35, AFP <20
- 12 weeks PrOD + R
- No ‘bad prognostic’ features for 12 weeks therapy
- Adherence?
Resistance Testing MM and MN

MM
- G1a
- Early HCV
- Short duration Sof + Vel
- NO baseline or treatment emergent RASs

MN
- G1a
- Compensated cirrhosis
- 12 weeks PrOD + R
- NO baseline RASs
 - Treatment Emergent
 - NS3 – R155K, D168E
 - NS5a – M28V, Q30R
So how do we re-treat our two patients?
RESCUE/A5348: RBV and Longer Tx Duration for Overcoming Resistance, Optimizing Retreatment

Previous SOF Failure Without NS5A Exposure
37% (30/82) with previous SMV + SOF failure

- 37% (30/82) with previous SMV + SOF failure
- No impact of BL NS5A or NS5B RASs

- 6/10 VFs SOF + SMV failures; 7/10 cirrhotic
- No impact of BL NS5A or NS5B RASs
Roles of RBV and Longer Tx Duration in Overcoming Resistance, Optimizing Retreatment

- Single-arm trial
- HCV-infected pts without SVR in previous phase II trials of SOF/VEL (n = 41) or SOF/VEL + VOX (n = 28)
- Cirrhosis: 26%; previous relapse: 99%
- 20% GT2
- Only 18% of GT1 with NS5A RASs
- Previous treatment: 41% VEL 25 mg, 74% < 12 wks

MAGELLAN-1, Part 2 Study: Objective and Study Design

Objective

- Determine the efficacy and safety of G/P for 12 or 16 weeks in patients with chronic HCV GT1, 4, 5 or 6 infection and prior DAA failure, including those with compensated cirrhosis

Treatment Period

1:1 Randomized

12 weeks
N = 44

16 weeks
N = 47

G/P

0

Patients with cirrhosis: 50% enrollment maximum
NS5A-naïve patients: 40% enrollment maximum

Weeks

Poordad F, et al. 52nd EASL; Amsterdam, Netherlands; April 19-23, 2017. Abst. PS-156.
MAGELLAN-1, Part 2: Registrational Study
MAGELLAN-1, Part 2 Study: Results
SVR12 by DAA Class in Prior Therapy

Overall SVR12:
- 12-week: 89% (39/44)
- 1 OTVF; 4 relapse
- 16-week: 91% (43/47)
- 1 OTVF; 0 relapse

Prior Treatment History
- PI: TVR, SMV, BOC
- NS5A: LDV, DCV
- NS5A+PI: OBV and PTV, or other combinations
- OTVF, on-treatment virologic failure

Poordad F, et al. 52nd EASL; Amsterdam, Netherlands; April 19-23, 2017. Abst. PS-156.
Sofosbuvir-Velpatasvir-Voxilaprevir in NS5A-Experienced GT 1-6 POLARIS-1: Study Design

<table>
<thead>
<tr>
<th>Week</th>
<th>0</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=152</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GT 1-6 with NS5A inhibitor experience*
\(n = 415 \)

- **Sofosbuvir-Velpatasvir-Voxilaprevir**
- **Placebo**

- **GT 1 patients** randomized 2:1 ratio (active:placebo). Stratified by presence of cirrhosis (target ≥30%).
- Genotypes 2-6 were assigned to active arm (and not randomized).
- Placebo recipients were eligible for deferred treatment with sofosbuvir-velpatasvir-voxilaprevir

Drug Dosing

Sofosbuvir-Velpatasvir-Voxilaprevir (400/100/100 mg): fixed dose combination; one pill once daily
Placebo: one pill once daily

Sofosbuvir-Velpatasvir-Voxilaprevir in NS5A-Experienced GT 1-6

POLARIS-1: Prior NS5A Treatment

Sofosbuvir-Velpatasvir-Voxilaprevir in NS5A-Experienced GT 1-6

POLARIS-1: Results

POLARIS-1: SVR12 Results by Genotype

MAGELLAN-3: GLE/PIB + SOF + RBV for 12-16 Wks for Retreatment After Failure of GLE/PIB

- Ongoing, open-label phase IIIb study
 - Primary endpoint: SVR12

Noncirrhotic patients with GT1, 2, 4, 5, 6 HCV infection ± HIV coinfection with VF on/after GLE/PIB and no previous NS5AI or PI* (N = 2)

Cirrhotic and noncirrhotic patients with GT1-6 HCV infection ± HIV coinfection with VF on/after GLE/PIB ± previous NS5AI or PI**† (N = 21)

*All patients received GLE/PIB in previous clinical study and either completed treatment or discontinuation ≥ 1 mo before screening. †Includes patients with GT3 ± cirrhosis and ± previous NS5AI or PI, cirrhotic patients with any HCV GT ± previous NS5AI or PI, and patients with any HCV GT ± cirrhosis with previous NS5AI or PI. Dosing: GLE/PIB 300/120 mg QD + SOF 400 mg QD + RBV 1000-1200 mg BID.

MAGELLAN-3: Efficacy of GLE/PIB + SOF + RBV in Patients Who Experienced GLE/PIB Failure

- Baseline RAS:
 - NS5A RAS detected in 18 (78%) of 23 patients
 - 12-wk arm: 2/2
 - 16-wk arm: 16/21
 - NS3 + NS5A RAS detected in 5/23 patients, all in 16-wk arm
- VF occurred in 1 patient in 16-wk arm
 - GT1a HCV infection, cirrhosis, previous LDV/SOF, NS5A RAS (Q30K + Y93H), and no NS3 RAS at MAGELLAN-3 BL

HCV-retreatment post failure

- Treatment decisions ideally guided by RAS testing
- SOF/VEL/VOX 12 weeks OR G/P + SOF for 12 weeks are ideal retreatment options including compensated cirrhotics
- SOF/VEL + R for 24 weeks may be a re-treatment option in de-compensated cirrhotics
So what about MM and MN?

MM
- G1a
- Early HCV
- Short duration SOF/VEL
- NO baseline or treatment emergent RASs
- SOF/VEL 12 weeks

MN
- G1a
- Compensated cirrhosis
- 12 weeks PrOD + R
- NO baseline RASs
- Treatment Emergent
 - NS3 – R155K, D168E
 - NS5a – M28V, Q30R
- SOF/VEL/VOX 12 weeks
EASL Recommendations on Treatment of Hepatitis C 2018

European Association for the Study of the Liver

- Testing for HCV resistance prior to treatment is not recommended (B1).

- HCV resistance testing prior to retreatment in patients who failed after any of the DAA-containing treatment regimens is useful to guide retreatment by probabilities of response, according to the resistance profile observed in the context of a multidisciplinary team including experienced treaters and virologists (B2).
And they lived happily ever after...?

Questions?