NAFLD in HIV- infected patients

Juan Macías
Hospital Universitario de Valme
14th International Workshop on Co-infection: HIV, Hepatitis and Liver Disease
May 17th, 2018
Definition of NAFLD

Fatty liver
(≥5% steatotic hepatocytes)

Secondary FLD
- Alcohol
- Drugs
- Hereditary disorders

Non-alcoholic fatty liver disease (NAFLD)
- Non-alcoholic fatty liver (NAFL)
- Non-alcoholic steatohepatitis (NASH)

Body weight gain after ART

NA-ACCORD: 14,084 patients from 17 cohorts

NAFLD in HIV-infected patients

• Prevalence
• Natural history and risk of progression
• Factors associated with steatosis:
 – Metabolic risk factors
 – ART?
 – Genetics
• Management
Prevalence of steatosis in HIV/HCV coinfection: Liver biopsy

n 395 154 163 183 137 148 112
Factors associated with steatosis in HCV/HIV coinfection: Liver biopsy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ART≥4 years</td>
<td>-</td>
<td>ART≥4 years</td>
<td>ddN (current)</td>
<td>d4T, No LPV-r</td>
<td>-</td>
<td>-</td>
<td>d4T (ever)</td>
</tr>
<tr>
<td>BMI</td>
<td>↑TG</td>
<td>-</td>
<td>Weight</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Weight, ↑ FPG</td>
</tr>
<tr>
<td>G3, HCV VL</td>
<td>-</td>
<td>-</td>
<td>Alcohol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ferritin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Caucasian race</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Fibrosis</td>
<td>Fibrosis</td>
<td>Inflammation</td>
<td></td>
</tr>
</tbody>
</table>

TG: Triglycerides; FPG: Fasting plasma glucose
Prevalence of hepatic steatosis measured by controlled attenuation parameter (CAP) in HIV infection

- **Patients**: Consecutive HIV-infected outpatients.

- **Methods**:
 - CAP measurements
 - Significant HS: CAP value ≥238 dB/m

Macías et al. AIDS 2014;28:1279-87
Relationship between hepatic steatosis and previous exposure to antiretroviral drugs

- **Nevirapine**
 - No (n=384): 43%
 - Yes (n=152): 32%
 - P=0.022

- **Ritonavir-boosted protease inhibitor**
 - No (n=216): 41%
 - Yes (n=284): 27%
 - P=0.042

- **Raltegravir**
 - No (n=412): 42%
 - Yes (n=87): 31%
 - P=0.064

- **Maraviroc**
 - No (n=459): 41%
 - Yes (n=41): 27%
 - P=0.077

Macías et al. AIDS 2014;28:1279-87
Frequency of hepatic steatosis according to body mass index category (N=505)

<table>
<thead>
<tr>
<th>Body mass index category</th>
<th>Patients with significant HS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal weight</td>
<td>90 (26%)</td>
</tr>
<tr>
<td>Overweight</td>
<td>88 (64%)</td>
</tr>
<tr>
<td>Obesity grade I</td>
<td>20 (87%)</td>
</tr>
<tr>
<td>Obesity grade II</td>
<td>3 (100%)</td>
</tr>
</tbody>
</table>

$p<10^{-6}$

Macías et al. AIDS 2014;28:1279-87
Factors associated with hepatic steatosis: Multivariate analysis

Adjusted odds ratio

- %CD4 (per unit increase), p=0.200
- Plasma HIV (≤50 vs. >50 copies/ml), p=0.352
- DBP (mmHg, per unit increase), p=0.872
- FPG≤100 mg/dL, p=0.228
- TG<150 mg/dL, p=0.395
- TC (mg/dl, per unit increase), p=0.841
- LDL (mg/dl, per unit increase), p=0.824
- FMR (per unit increase), p=0.540
- BMI (k/m², per unit increase), p<10⁻⁶

Adjusted by age, gender, race, tobacco, IQR CAP, PI/r, MVC, RAL, NVP.

FMR: Fat mass ratio; %CD4: CD4 cell percentage.

Macías et al. AIDS 2014;28:1279-87
Prevalence of hepatic steatosis measured by CAP in HIV infection: German experience

- **Design**: Prospective cross-sectional study (Bonn University).
- **Patients**: Consecutive HIV-infected outpatients. Alcohol intake <30 g/day (men), <20 g/day (women).
- **N= 364**
- **Independent associations:**
 - BMI
 - Triglycerides
 - HbA1c

Prevalence of hepatic steatosis measured by CAP in HIV infection: Canadian experience

- **Design**: Prospective screening program for HS. Single center, Canada (Sept 2013-Sept 2016).
- **CAP thresholds**:
 - HS (>10%): 248 dB/m
 - Severe HS (>66%): 292 dB/m
- **Independent associations**:
 - BMI
 - Triglycerides

Prevalence of steatosis in HIV

• Frequent problem: 35%-40% of unselected populations

• Factors associated with steatosis:
 – Metabolic factors: BMI
 – ART
 • A problem of the past: ddX
 • Any role for “metabolic friendly” drugs
NAFLD in HIV-infected patients

- Prevalence
- Natural history and risk of progression
- Factors associated with NAFLD:
 - Metabolic risk factors
 - ART?
 - Genetics
- Management
Frequency of hepatic steatosis in paired liver biopsies

Retrospective cohort study (n=146): HIV/HCV coinfected patients with paired biopsies

Baseline
Median (Q1-Q3) time between biopsies: 3.3 (2-5.2) years

Follow-up

Macías et al. Hepatology 2012;56:1261-70
Frequency of patients with progression of hepatic steatosis

Macías et al. Hepatology 2012;56:1261-70
Progression of hepatic steatosis by the length of exposure to ddX, 3TC, EFV and NVP

% patients with HS progression

<table>
<thead>
<tr>
<th>Drug</th>
<th><2 years</th>
<th>2-4 years</th>
<th>>4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddX</td>
<td>10%</td>
<td>36%</td>
<td>88%</td>
</tr>
<tr>
<td>EFV</td>
<td>22%</td>
<td>38%</td>
<td>88%</td>
</tr>
<tr>
<td>3TC</td>
<td>38%</td>
<td>42%</td>
<td>53%</td>
</tr>
<tr>
<td>NVP</td>
<td>67%</td>
<td>21%</td>
<td>50%</td>
</tr>
</tbody>
</table>

n= 39 25 25 27 16 8 50 50 17 33 14 6

P<0.001 P=0.002 P=0.310 P=0.061

Macías et al. Hepatology 2012;56:1261-70
Factors associated with hepatic steatosis progression. Multivariate analysis

Odds ratio (95% CI)

- Time* on EFV (p=0.365)
- Time* on 3TC (p=0.069)
- Time* on ART (p=0.913)
- Time* on ddX (p<0.001)
- Change in glucose† (p=0.024)

†per 10 mg/mL increase; *per year

Macías et al. Hepatology 2012;56:1261-70
NASH: Changes in NAS score between biopsies

Nonalcoholic fatty liver disease activity score (NAS)

- **Steatosis: Brunt score.**
 - 0, absent steatosis
 - 1, <33%
 - 2, 33-66%
 - 3, ≥66%
- **Lobular inflammation:**
 - 0, no foci.
 - 1, <2 foci per 200× field.
 - 2, 2-4 foci per 200× field.
 - 3, >4 foci per 200× field.
- **Cytologic ballooning:**
 - 0, none.
 - 1, few balloon cells.
 - 2, many cells/prominent ballooning.

Proportion of patients with change in NAS score

- Decrease: 24%
- No change: 31%
- Increase: 45%

Macías et al. Hepatology 2012;56:1261-70
Persistence of or progression to NASH (NAS score ≥5)

Initial biopsy

NAS≥5
16% (n=24)

NAS<5
84% (n=122)

Final biopsy

Persistence of steatohepatitis
N = 9

Progression to steatohepatitis
N = 18

Fibrosis progression ≥1 stages was associated with persistence/progression to steatohepatitis (AOR [95% CI]=2.4 [1.01-5.7], p=0.047)

Macías et al. Hepatology 2012;56:1261-70
Changes in steatosis measured by CAP in HIV-infected

• **Design:** Prospective cohort study (November 30\(^{th}\), 2011-October 30\(^{th}\), 2013).

• **Patients:** Consecutive HIV-infected patients attended at 2 outpatient clinics (Spain).

• **Follow-up:** 12 months. Hepatic transient elastography examination with CAP scheduled every 6 months.

Baseline: Date of the first CAP measurement.

Macías et al. HIV Med 2016; 17:766-773
Factors associated with CAP changes

- BMI increase: Yes, 14; No, 4
- HIV RNA undetectable: Yes, 15; No, -1
- FPG increase: Yes, -30; No, -4
- Triglyceride increase: Yes, -11; No, 5
- Raltegravir: p=0.024; p<0.001; p=0.018

CAP median (Q1-Q3) change between baseline and 12 months

Multivariate analysis
Only BMI change associated with change in CAP [B (SD): 9.03 (1.9), p<0.001]

Macías et al. HIV Med 2016; 17:766-773
Changes in steatosis measured by CAP in HIV-infected patients: Canadian experience

- **Design**: Single center, Canada (Sept 2013-Sept 2016).
- **HS progression**:
 - Development of CAP>248 dB/m
 - Transition to severe HS, CAP<292 dB/m
- **Independent associations (hazard ratio)**:
 - BMI (per Kg/m²): 1.09 (1.03–1.17), p<0.05
 - HCV-coinfection (Yes vs. No): 0.51 (0.27–0.96), p <0.05

N=232
Changes in liver stiffness in HIV-infected patients with steatosis

- **Design**: Single center, Canada (Sept 2013-Sept 2016).
- **Fibrosis progression**:
 - Development of LSM >7.1 KPa
 - Transition >12.5 KPa
- **Independent associations (hazard ratio)**:
 - Any HS: 4.18 (1.21–14.5), p<0.05
 - Duration of HIV infection (per 10 yr): 1.43 (1.02–2.12), p <0.05

Natural history of steatosis (& NAFLD) in HIV

• Incomplete: Hard clinical end-points?

• Factors associated with steatosis progression:
 – Metabolic factors: BMI
 – ART
 • Obsolete: ddX
 • But, EFV?, INSTI?
NAFLD in HIV-infected patients

- Prevalence
- Natural history and risk of progression
- Factors associated with NAFLD:
 - Metabolic risk factors
 - ART?
 - Genetics
- Management
Changes in liver steatosis after switching efavirenz to raltegravir: The STERAL study

Randomized, controlled, open label, phase 4 clinical trial

- CAP ≥ 238 dB/m, indicative of steatosis involving >10% of hepatocytes.
- Daily alcohol intake < 50 g for men and < 40 g for women.
- Plasma HIV RNA < 50 copies/ml for ≥ 24 weeks in, at least, two visits.

![Diagram showing treatment regimens]

- **Baseline**
 - EFV + TDF/FTC or ABC/3TC

- **24 weeks**
 - RAL 400 mg BID + TDF/FTC or ABC+3TC

- **48 weeks**
 - EFV + TDF/FTC or ABC+3TC

CAP evaluations
Median CAP values during the follow-up by treatment group

- **Raltegravir group (N=19)**
 - Baseline: 260 dB/m
 - 24 weeks: 273 dB/m
 - 48 weeks: 250 dB/m

- **Efavirenz group (N=20)**
 - Baseline: 285 dB/m
 - 24 weeks: 273 dB/m
 - 48 weeks: 250 dB/m

P-values:
- Baseline to 24 weeks: P=0.607
- Baseline to 48 weeks: P=0.035
Proportion of patients without significant steatosis (CAP <238 dB/m) at week 48

- Raltegravir group: 9/19 (47%) with P=0.029
- Efavirenz group: 3/20 (15%)
Body mass index by treatment group at week 48

p=0.084

Median (Q1-Q3) BMI at 48 week

Raltegravir: 27.6 Kg/m² (24.3-31)
Efavirenz: 25.5 Kg/m² (23.8-29.9)
ART & FLD in HIV infection

- ddX are highly steatogenic, so what? Other ARV drugs might also be “steatotoxic”.

- Signals in previous studies obscured by metabolic factors.

- Steatosis can regress after switching to safer and less toxic drugs, i.e. from efavirenz to raltegravir.
NAFLD in HIV-infected patients

• Prevalence

• Natural history and risk of progression

• Factors associated with NAFLD:
 – Metabolic risk factors
 – ART?
 – Genetics

• Management
Adiponutrin: Yes or no?

- **PNPLA3** gene (SNP rs738409): Major genetic determinant of NAFLD. Replicated in the general population of different ethnicities.

- **Contradictory results in HIV infection:**
 - *PNPLA3*_rs738409 related to steatosis in HIV-infected MSM, but not among HIV-uninfected MSM\(^1\).
 - Not replicated in a larger sample of patients\(^2\).
 - Lack of association in HIV/HCV-coinfected patients\(^3,4\).

- GWAS in the HIV-infected population necessary.

Management (NAFLD & FLD)

- Normal liver
- Fatty liver

Diet & exercise

Genetic factors

Fat accumulation in the cytosol

Mitochondria disfunction

Oxidative stress

Metabolic factors (Obesity, T2DM, dyslipidemia)

NRTI, EFV exposure

Secondary FLD

Summary

• Steatosis, mainly NAFLD, is frequent in HIV infection and can induce fibrosis progression.

• Factors associated with hepatic steatosis in HIV infection:
 – Metabolic factors: TRUE NAFLD
 – Antiretroviral drugs: Keep in mind
 • EFV, switching to RAL can induce regression
 – Specific genetics?

• Management = HIV-negative + Review ART
ACKNOWLEDGEMENTS

Hospital Universitario de Valme
Juan A. Pineda
Luís M. Real
Nicolás Merchante
Fernando Lozano
Jesús Gómez-Mateos

C. Hospitalario Huelva
Dolores Merino
Miguel Raffo

Hospital Universitario Puerto Real
Francisco Téllez

Hospital La Línea
Montserrat Pérez

Hospital Universitario La Paz. Madrid.
Juan González
MªLuisa Montes-Ramírez.

Hospital Universitario 12 de Octubre
Rafael Rubio
Federico Pulido

Hospital Universitario Reina Sofía.
Antonio Rivero
Angela Camacho
Antonio Rivero-Juárez

Hospital Universitario
Virgen de la Victoria. Málaga.
Manuel Márquez
Rosario Palacios
Jesús Santos

Hospital de Jaén
Mohamed Omar

Hospital de Jerez
Alberto Terrón

MSD
Manuel Cotarelo
Pedro Ferrer

HEPAVIR Study Group