Clinical Pharmacology of HIV Pre-Exposure Prophylaxis (PrEP) – Where are we now?

Craig W. Hendrix, MD
Wellcome Professor and Director, Division of Clinical Pharmacology
Johns Hopkins University School of Medicine
Disclosures

ViiV/GSK funded clinical trial managed through Johns Hopkins
Objectives

- Describe brief history of PrEP to date
 - Limitations to daily oral PrEP
 - Differential diagnosis vaginal product underperformance

- Innovations to broaden PrEP success
 - Long-acting PrEP
 - Vaginal microbicicides
 - Rectal microbicicide
HIV PrEP Development 2001-2018

- **2001-2009** Vaginal microbicides – 6 failed RCTs
- **2010** Vaginal Tenofovir gel heterosexual women
 - Modest protection, 3 RCTs (1 mITT, 2 post hoc)
 - Clinical Pharmacology demonstrated concentration-response
- **2010-2015** HIV PrEP Oral TFV ± FTC
 - MSM/TGW (N=3) modest to high level protection, sNDA
 - Hetero women & men (N=2), high protection, sNDA
 - PWID (N=1) protects
 - Heterosexual women (N=2) failed to protect
- **2016** HIV Dapivirine intravaginal ring (N=2)
 - Modest protection
 - EMA NDA under review 2017-2018

Abdool Karim Science 2010; Abdool Karim Lancet 2011; Grant NEJM 2010; Anderson STM 2012; Baeten NEJM 2012; Marrazzo NEJM 2015; van Damme NEJM 2012
HIV PrEP Development 2001-2018

- 2001-2009 Vaginal microbicides – 6 failed RCTs
- 2010 Vaginal Tenofovir gel heterosexual women
 - Modest protection, 3 RCTs (1 mITT, 2 post hoc)
 - Clinical Pharmacology demonstrated concentration-response
- 2010-2015 HIV PrEP Oral TFV ± FTC
 - MSM/TGW (N=3) modest to high level protection, sNDA
 - Hetero women & men (N=2), high protection, sNDA
 - PWID (N=1) protects
 - Heterosexual women (N=2) failed to protect
- 2016 HIV Dapivirine intravaginal ring (N=2)
 - Modest protection
 - EMA NDA under review 2017-2018

Abdool Karim Science 2010; Abdool Karim Lancet 2011; Grant NEJM 2010; Anderson STM 2012; Baeten NEJM 2012; Marrazzo NEJM 2015; van Damme NEJM 2012
Vaginal PrEP Underperformance

<table>
<thead>
<tr>
<th>PrEP Type</th>
<th>Study</th>
<th>RRR (%)</th>
<th>Post Hoc “Adherence” Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV Vaginal Gel</td>
<td>CAPRISA 004</td>
<td>39%</td>
<td>40-88%</td>
</tr>
<tr>
<td></td>
<td>VOICE gel</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FACTS 001</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Dapivirine IVR</td>
<td>ASPIRE</td>
<td>27%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>The Ring Study</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>TDF/FTC Oral</td>
<td>iPrEx</td>
<td>42%</td>
<td>90-100%</td>
</tr>
<tr>
<td></td>
<td>Partners</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC TDF2</td>
<td>62%</td>
<td></td>
</tr>
</tbody>
</table>

*mITT, modified intent to treat analysis; **RRR = relative risk reduction in HIV infection; ***assumes no microbiome effect
Differential Diagnosis

- **Adherence** doesn’t completely account for oral-vaginal outcome differences
- Women practicing **RAI** – certain, but variable effect
 - If 1/20 HIV exposures is anal & 20x anal HIV transmission risk, max RRR is 50%
 - Front door dose, no back door protection
- **Vaginal microbiome** may reduce TFV concentration with concomitant BV
- Polymorphic LOF kinase mutations impact NTP concentrations, but <10%
- **[Tissue] v. [Systemic] relative contribution** varies by route; unsettled
Long-Acting Formulations
Adherence: CAB-LA (2 months)

Problem being solved is daily oral adherence
- Solution requires some daily oral adherence
- *Oral lead-in – may be dropped with data*
- *Long tail – may be inconsequential for resistance*

Target Dosing based on Animal Model
- Confidence bolstered by Treatment Effectiveness
- But tissue concentrations poor relative to plasma
- HPTN 083/084 greatly inform target concentration issue
Adherence: bnMAbs (2 – 6 months)

- Neutralize virus (Env) & recruit effector cells to kill HIV infected cells
- Rare “elite” neutralizers: evolve nAbs which neutralize within & across clades
- Engineering improvements – increase coverage, potency, and half-life
 - Passive immunoglobulin low potency, narrow breadth
 - Early bnMAbs (from elite neutralizers) increase potency & breadth
 - Combinations broadens coverage *(move up)*
 - FcRn substitution increases half-life *(move right)*
- Treatment
 - Clinical transiently reduces viral load (VRC01)
- Prevention
 - High level SHIV vaginal/rectal protection macaques
 - 2 RCTs underway with VRC01 infusion
- Expensive vs. other approaches

Sok D. Immunity 2016;45(5):958-960 (Figure 1)
Adherence: Subdermal Implant Designs (1 year)

- TAF Oak Crest (removable)
 -Courtesy Marc M. Baum, Oak Crest Institute of Science; Gunawardana et al., AAC, 2015

- TAF RTI (biodegradable)
 -van der Straten LEAP 2018

- TAF or CAB SLAP-HIV (removable)
 -Hope/Kiser SLAP-HIV

Courtesy Marc M. Baum, Oak Crest Institute of Science; Gunawardana et al., AAC, 2015; Ariane van der Straten LEAP 2018; Thomas Hope SLAP-HIV.
Vaginal Microbicide Formulations
Adherence: Pod-IVR Design (1 month)

- ≤10 Polymer-coated drug “pods”
- An un-medicated, torus-shaped elastomeric support holds the pods
- Release rate controlled through delivery channels size
- Flexible drug combinations unlike matrix of single reservoir rings
- Phase I, 3 ARV study under review
- MPT (contraception/ARV) pre-clinical

Marc Baum & John Moss, Oakcrest Institute of Science
Front Door-Back Door: Pod-IVR

Day 7 Rectal Fluid Concentrations

- **In Vitro (µm)**
- **Pod-IVR (clinical : in vitro)**

<table>
<thead>
<tr>
<th>ARV</th>
<th>IC$_{50}$</th>
<th>IC$_{90}$</th>
<th>TDF</th>
<th>TDF FTC</th>
<th>TDF FTC MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV</td>
<td>0.5</td>
<td>3.9</td>
<td>2.2</td>
<td>81.0</td>
<td>0.81</td>
</tr>
<tr>
<td>FTC</td>
<td>0.6</td>
<td>0.35</td>
<td>-</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>MVC</td>
<td>0.006</td>
<td>0.013</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

- Combinations complex
- Rectal fluid may provide protective levels
- Future Work
 - Rectal tissue cell active drug
 - Anterior & posterior colon wall
 - Relevant distance

Vincent K, et al. PLOS One (in review)
Multipurpose Prevention Technologies (MPT)

- **MPT: PrEP & (Other STI* +/- or Contraception)**
 - Complicated design, development, & partnerships
 - Balances limiting attributes of optimized single drug platforms with improved adherence with one device, two purposes

- **Product pipeline (22 products)**
 - Intravaginal ring – 4 pregnancy, 5 STI
 - Vaginal Gels – 3 pregnancy, 4 STI
 - Vaginal films – 2 STI
 - Fast dissolve insert – 3 STI
 - Barrier - 1 pregnancy/STI

- *Most STIs are HIV in combination with HSV-2 +/- or HPV, 2 products also cover chlamydia*
On Demand, Portable: Tenofovir Film

Plasma

- T_{max} Film > Gel; C Film > Gel 8+ hrs

Cervical Tissue Homogenate

- Film > Gel (except RF, Plasma)

Ex vivo HIV Tissue Challenge

- BL v 5h NS; Film v. Gel any time NS

FAME Program: Robinson JAIDS 2018, Bunge JAIDS (in review); Also Dapivirine Bunge JAIDS 2016; Robinson ARHR 2016
Systemic v. Tissue & Oral v. Topical Dosing

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Regimen Duration</th>
<th>Serum or Plasma TFV ng/mL</th>
<th>VT TFV-DP fmol/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTN-001 TFV 1% VF</td>
<td></td>
<td></td>
<td></td>
<td>1,807 (591, 5,860)</td>
</tr>
<tr>
<td>MTN-014 TFV 1% RGVF</td>
<td></td>
<td></td>
<td></td>
<td>166 (37, 2,377)</td>
</tr>
<tr>
<td>Pod-IVR TDF (OCIS)</td>
<td></td>
<td></td>
<td></td>
<td>303 (277,938)</td>
</tr>
<tr>
<td>Pod-IVR TDF-FTC (OCIS)</td>
<td></td>
<td></td>
<td></td>
<td>289 (110, 603)</td>
</tr>
<tr>
<td>Pod-IVR TDF-FTC-MVC</td>
<td></td>
<td></td>
<td></td>
<td>302 (177,824)</td>
</tr>
<tr>
<td>Reservoir IVR (Einstein)</td>
<td></td>
<td></td>
<td></td>
<td>120 (90, 550)</td>
</tr>
<tr>
<td>TFV Film 40 mg SD (FAME)</td>
<td></td>
<td></td>
<td></td>
<td>160 (27, 485)</td>
</tr>
<tr>
<td>TFV Film 40 mg MD (FAME)</td>
<td></td>
<td></td>
<td></td>
<td>937 (56, 1456)</td>
</tr>
<tr>
<td>MTN-001 TDF oral</td>
<td></td>
<td></td>
<td></td>
<td>BLQ (BLQ, BLQ)</td>
</tr>
<tr>
<td>HPTN-066 TDF oral</td>
<td></td>
<td></td>
<td></td>
<td>BLQ, 41 (2/2)</td>
</tr>
</tbody>
</table>

Criteria to advance product?
- Vaginal tissue TFV-DP? (vaginal dosing)
- PBMC TFV-DP? (oral dosing)
- Both? In what combination?

How Long? (on demand vs. IVR)

proven product effectiveness in primary (oral TDF 65% RRR) or post hoc (oral >90% RRR; vaginal 60-88% RRR)
Evolving Thoughts on Target Concentration

• TDF/FTC Rx dose (conc’n) same for PrEP
 – refuted by protective doses in MSM v. women
• [Tissue] a/w successful oral PrEP predicts topical dosing target
 – refuted by vaginal gel underperformance despite high TFV [tissue]
• At least a [2-site] problem, [systemic] & [tissue] contribute, but in different proportion depending on dosing route
 – Supported by plasma conc’n-response
 – PK/PD model fit Improved by [tissue] & route of risk adjustment of [systemic] data
 – What is ΔEC90 for oral vs. Topical?
• Any resolution short of oral v. topical RCT?
Rectal Microbicide Formulations
On Demand Rectal Microbicide Feasibility

- **On demand** oral PrEP (Truvada) efficacy high
 - Ipergay 86% risk reduction

- **On demand** vaginal tenofovir efficacy modest
 - CAPRISA 004, FACTS 001 ~60% with good adherence

- **NHP Protection:**
 - Single dose rectal TFV protects rectal SHIV challenge

- **Behaviorally-congruent** formulations –
 - ARV-medicated sex lubricant or douche
 - “piggy-back” onto very common sex practices
 - Less demanding of behavior change
TFV Rectal Microbicide Development

Methods/Vehicle Development

- **JHU**
 - “HIV” surrogate distribution
- **JHU**
 - Tissue pharmacology
- **CDC/NIH**
 - Luminal PK-D imaging
- **NIH**
 - PD Surrogates: Explant, BLT, NHP
- **MDP 2/2b**
 - RF vehicle development
- **MDP 1**
 - Enema vehicle development
- **JHU**
 - Lube dosing feasibility
Does RM Outdistance & Outlast “HIV”?

“Microbicide”\(^{\text{111}}\text{In-DTPA}\) “HIV” \(^{99m}\text{Tc-SC}\) in Ejaculate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distance to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{\text{min}})</td>
<td>Most distal signal</td>
</tr>
<tr>
<td>(D_{\text{max}})</td>
<td>Maximum “concentration”</td>
</tr>
<tr>
<td>(D_{\text{max}})</td>
<td>Most proximal signal</td>
</tr>
</tbody>
</table>

Rectal TFV gel (0hr), simulated sex/ejaculation (1hr), SPECT/CT (2hr)

Hiruy, et al. ARHR 2015

Hendrix, et al. CPT 2008
TFV Rectal Microbicide Development

Methods/Vehicle Development
- JHU: “HIV” surrogate distribution
- JHU: Tissue pharmacology
- CDC/NIH: Luminal PK-D imaging
- NIH: PD Surrogates: Explant, BLT, NHP
- MDP 2/2b: RF vehicle development
- MDP 1: Enema vehicle development
- JHU: Lube dosing feasibility

Drug Product Development

<table>
<thead>
<tr>
<th>Phase</th>
<th>Vaginal Formulation (VF)</th>
<th>Reduced Glycerin (RGVF)</th>
<th>Rectal Formulation (RF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>RMP-02/MTN-006</td>
<td>MTN-007</td>
<td>CHARM 01/02</td>
</tr>
<tr>
<td>Phase II</td>
<td>No Phase II • Safety/AEs</td>
<td>MTN-017</td>
<td>Safety/Accept</td>
</tr>
<tr>
<td>Phase III</td>
<td>No Phase III • Applicator (Safety)</td>
<td></td>
<td>Future RCT? On Demand Lube</td>
</tr>
</tbody>
</table>

Dosages
- Vaginal Formulation (VF): 3,111 mOsm/kg TFV 1%
- Reduced Glycerin (RGVF): 836 mOsm/kg TFV 1%
- Rectal Formulation (RF): 479 mOsm/kg TFV 1%

Future RCT?
- On Demand Lube
Is Gel as Lube Feasible?

- Douche
 - Saline-like 125 mL

- Applicator Gel
 - HEC 10 mL

- Manual Lube Application
 - Wet™ 10 mL

- How much product is delivered?
- Where is the gel distributed?
Is Gel as Lube Feasible?

- **Douche**
 - Saline-like 125 mL

- **Applicator Gel**
 - HEC 10 mL
 - Retention: 95%
 - Distribution: 5.9–7.4 cm

- **Manual Lube Application**
 - Wet™ 10 mL
 - Retention: 10% (3.5 mL gel)
 - Distribution: 4.4–15.3 cm

- • Retention: 60%
- • Distribution: 60 cm
TFV Rectal Microbicide Development

Methods/Vehicle Development
- **JHU**
 - “HIV” surrogate distribution
 - Tissue pharmacology
- **CDC/NIH**
 - Luminal PK-D imaging
- **NIH**
 - PD Surrogates: Explant, BLT, NHP
- **MDP 2/2b**
 - RF vehicle development
- **MDP 1**
 - Enema vehicle development
- **JHU**
 - Lube dosing feasibility

Drug Product Development

<table>
<thead>
<tr>
<th>Vaginal Formulation (VF)</th>
<th>3,111 mOsm/kg</th>
<th>TFV 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>RMP-02/MTN-006</td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>No Phase II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Safety/AEs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reduced Glycerin (RGVF)</th>
<th>836 mOsm/kg</th>
<th>TFV 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>MTN-007</td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>MTN-017</td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>No Phase III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Applicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*(Safety)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rectal Formulation (RF)</th>
<th>479 mOsm/kg</th>
<th>TFV 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>CHARM 01/02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TFV 10% RF Lube</td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>Safety/Accept</td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>Future RCT ?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On Demand Lube</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enema Formulation (EF)</th>
<th>Dose escalation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iso- or hypo-osmolar</td>
</tr>
<tr>
<td>Phase I</td>
<td>DREAM 01-03</td>
</tr>
<tr>
<td>Phase II</td>
<td>Safety/Accept</td>
</tr>
<tr>
<td>Phase III</td>
<td>Future RCT ?</td>
</tr>
<tr>
<td></td>
<td>On Demand Douche</td>
</tr>
</tbody>
</table>
Grindr Survey

Especially with sex product, Essential to build around user experience

- 4,751 Took Grindr Survey
 - 78% RAI last 3 months
 - 80% douche before RAI
 - 27% douche after RAI

Likelihood of using a microbicide douche (currently douche) 98%
Likelihood of using a microbicide douche (currently do not douche) 94%
Insertive partner supportive of RM douching partner 96%

Generally much higher than similar survey research for vaginal products
Interspecies TFV-DP Comparisons

- TFV, TDF, TAF, CMX-157 Comparison
 - Doses selected to achieve clinical target
 - No large differences in mice or NHP

- Advance TFV to Clinical development
 - Flexible formulations

- Hypo-osmolar formulation
 - NHP ~10-fold increase tissue TFV-DP

- Significant variability (1-2 log_{10} range)

- Colorectal tissue [TFV-DP] target (iPrEx reference) exceeded by all doses in NHP

Xiao et al AAC 2017; Ensign et al Eur J Pharm Biopharm 2018
TFV Douche: Macaque SHIV Challenge

Pharmacodynamics: SHIV Rectal Challenge
- Daily oral TDF vs. weekly rectal TFV
- Weekly intrarectal SHIV challenge (10^3 TCID50)
- Weekly plasma viral RNA by qPCR
- “Infected” = 2 vRNA values > 250/mL x 2 wks

Steady-state oral PK & Challenge Ongoing; Oral-Topical [target] conversion remains unclear
Phase I: Douche PK in NHP & Human

Macaque PK Colon Cell TFV-DP

Human PK Colon Cell TFV-DP

TFV-DP concentration in rectal CD4 cells (fmol/10^6 cells)

$p = 0.0005$

Daily Oral
7/wk
4/wk
2/wk
Colon Luminal HIV & Product Distribution

Define HIV Distribution

- HIV surrogates (SPECT, color) & anatomy (CT, grayscale)

<table>
<thead>
<tr>
<th></th>
<th>99mTc Cell-free</th>
<th>111In Cell-assoc</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hr</td>
<td>7 (5, 8)</td>
<td>6 (5, 9)</td>
<td>0.73</td>
</tr>
<tr>
<td>4 hr</td>
<td>6 (5, 9)</td>
<td>5 (4, 7)</td>
<td>0.36</td>
</tr>
<tr>
<td>8 hr</td>
<td>6 (3, 7)</td>
<td>7 (6, 8)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*Sigmodoscopy distance adds 4 cm

Compare to Product Distribution

DREAM-01
TFV Douche Development

- Phase I
 - DREAM-01 – SAD (>90% complete)
 - DREAM-03 – MAD (NIH & FDA review)
 - DREAM-02 – Douche + sex sequencing (in development)

- Phase II/III
 - Extended safety convert to efficacy
 - Clinical trial simulation

- NDA & Market Planning
 - Negotiating with corporate partners
Summary

- **Long-Acting**
 - Injectables – RCTs, limits AEs, oral lead-in, long tail
 - Infusion bnMAbs – RCTs, future SC dosing?, less AEs, COST
 - Implantables – Pre-clinical, less frequent dosing, retrievable, bnMAb suitable

- **Vaginal Microbicides**
 - Vaginal gel & IVR underperformed in RCT
 - Novel formulations may enhance adherence, front-door back door issues
 - Uncertain cervicovaginal tissue concentration targets

- **Rectal Microbicides**
 - Behaviorally-congruent strategies - Lube feasible? Douche acceptable & exceeds [target]?
 - Uncertain rectal dosing target tissue concentration uncertain
 - Model building & Clinical Trial Simulation underway
Acknowledgements

 disappeared

Angela Kashuba
Pete Anderson

Ed Fuchs, Drug Development Unit, JHU
Mark Marzinke, Clinical Pharmacology Analytical Laboratory, JHU

Peter Anton, UCLA
Ian McGowan, University of Pittsburgh
Bill Spreen & Parul Patel, ViiV/GSK
Raphael Landovitz, UCLA
Marc Baum, Oak Crest Institute of Science
Ariane van der Straten, Research Triangle Institute
Pat Kiser, Northwestern University

Funders - CDC, NIH/DAIDS, JHU CFAR
Questions?