Intraindividual comparison of efavirenz, atazanavir, or ritonavir plasma pharmacokinetics before and during 21-days of vaginally administered hormone contraception

AIDS Clinical Trials Group A5316

Kimberly K. Scarsi, Yoninah S. Cramer, Kayla Campbell, Lauren R. Cirrincione, Susan L. Rosenkranz, Francesca Aweeka, Robert Coombs, Carmen D. Zorrilla, Kristine Coughlin, Laura E. Moran, Baiba Berzins, Catherine Godfrey, and Susan E. Cohn, for the AIDS Clinical Trials Group A5316 Study Team

K. Scarsi has no financial relationships with commercial entities to disclose.
Background

• Rates of unintended pregnancy remain high in women living with HIV
• There are known drug-drug interactions between ART (perpetrator) and hormonal contraceptives (victim)
• Hormones may also induce or inhibit drug-metabolizing enzymes, with potential to influence antiretroviral exposure
 – Statistically lower exposure described for EFV, RTV, and NFV when combined with various routes of contraceptive methods
 – Others find no difference in antiretroviral exposure
• Few intensive PK studies have evaluated antiretroviral exposure with and without exogenous administration of hormones on ART
Rationale and Objectives

Combined contraceptive vaginal ring

NuvaRing[®]:

ethinyl estradiol/etonogestrel 15/120 mcg/day

- Etonogestrel (ENG)
- Ethinyl estradiol (EE)

Primary Study Objective

- Characterize plasma hormone exposure when combined with EFV- or ATV/r-based ART
 (Scarsi et al. CROI 2018)

 - ATV/r-based ART ↓ ethinyl estradiol (EE) concentrations 29-35%, yet ↑ etonogestrel (ENG) concentrations by 71-79%
 - EFV-based ART ↓ EE by 53-57% and ↓ ENG concentrations by 76-79%

Secondary objective

- Estimate the effect of ENG/EE on the pharmacokinetics of ATV, RTV, and EFV

Methods

• For antiretroviral PK: within group pharmacokinetic evaluation of two groups of women living with HIV and currently receiving ART

Inclusion Criteria:
• ≥ 16 years of age and of reproductive potential
• Willing to use a second, non-hormonal form of effective contraception
• If not yet receiving ART: CD4+ cell count ≥350 cells/mm³ at screening
• ART groups: Stable regimen ≥ 30 days with HIV-1 RNA ≤400 copies/mL

Exclusion criteria:
• No concurrent hormonal therapies or drugs that interact with ART or hormone
• Approved by ethics committees at each site and registered as NCT01903031

Control Group:
Not yet receiving ART

EFV Group:
EFV 600mg daily + ≥ 2 NRTIs

ATV/r Group:
ATV/r 300/100mg + TDF 300mg daily + ≥1 NRTI
Entry:
ATV/r and EFV PK assessment:
0 (pre-dose), 1, 3, 4, 5, and 8 hours post-observed dose;
HIV-RNA

Day 21:
ATV/r and EFV PK repeated:
0 (pre-dose), 1, 3, 4, 5, and 8 hours post-observed dose;
HIV-RNA

- Adherence to ART was assessed by self report
 - PK visit rescheduled if participant reported a missed dose in the prior 3 days

Antiretroviral Pharmacokinetic (PK) and Statistical Analysis:
- AUC_{0-24h} and AUC_{0-8h} were calculated using the linear trapezoidal rule
 - AUC_{0-24h}: pre-dose concentration (C_{0h}) as the imputed concentration as C_{24h}
 - AUC_{0-8h} was not calculated if the C_{8h} was missing
- Intraindividual ART PK was compared between Day 21 and Day 0 by GMR (90% CI) and statistically compared with Wilcoxon signed-rank test
Results: participants included in ART PK analyses

- Assigned to arm based on ART
 - EFV group (n=28)
 - Missed day 21 visit (n=1);
 - Treatment discontinued per participant request (n=2);
 - Poor venous access (n=1)
 - Included in PK analyses (n=24)
 - ATV/r group (n=29)
 - Consent withdrawn (n=1);
 - Did not receive intervention (n=1);
 - Protocol violations (TDF omitted, n=2 and vaginal ring adherence n=1);
 - Poor venous access (n=1)
 - Included in PK analyses (n=23)
Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EFV Group (n=24)</th>
<th>ATV/r Group (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>36 (24, 55)</td>
<td>37 (24, 48)</td>
</tr>
<tr>
<td>Race/Ethnicity; n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>15 (63)</td>
<td>9 (39)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>8 (33)</td>
<td>8 (35)</td>
</tr>
<tr>
<td>Asian, Pacific Islander</td>
<td>0 (0)</td>
<td>5 (22)</td>
</tr>
<tr>
<td>White</td>
<td>1 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>26.9 (17.4, 64.5)</td>
<td>25.8 (19.2, 59.5)</td>
</tr>
<tr>
<td>CD4 (cells/mm3)*</td>
<td>746 (343, 1941)</td>
<td>656 (301, 1515)</td>
</tr>
<tr>
<td>Viral load (copies/mL)*</td>
<td><40 (<40, 2071)</td>
<td><40 (<40, 327)</td>
</tr>
</tbody>
</table>

Data presented as median (range), unless indicated.

*Variable n per group
<table>
<thead>
<tr>
<th>EFV Median (range)</th>
<th>Geometric Mean Ratio (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 (ART alone)</td>
<td>Day 21 (ART + NuvaRing)</td>
</tr>
<tr>
<td>Cmax (mcg/mL)</td>
<td>4.54 (1.35, 18.67)</td>
</tr>
<tr>
<td>Cmin (mcg/mL)</td>
<td>2.12 (0.90, 13.62)</td>
</tr>
<tr>
<td>AUC(_{0-24h}) (h*mcg/mL)</td>
<td>68.95 (27.11, 367.99)</td>
</tr>
<tr>
<td>AUC(_{0-8h}) (h*mcg/mL)</td>
<td>26.97 (8.64, 131.62)</td>
</tr>
</tbody>
</table>

BLQ: Below the lower limit of quantitation, 20 ng/mL (n=1)
^\(\text{AUC}\(_{0-8h}\) n=23\)
*Wilcoxon Signed-Rank test <0.05
Efavirenz concentration-time-curve, median (IQR)

Proportion of participants with:
- AUC_{0-24h} decrease = 15 of 24 (62.5%)
- EFV concentration $<1 \text{mg/L} = 4$ of 24 (16.7%)
Atazanavir pharmacokinetic parameters (n=23)

<table>
<thead>
<tr>
<th></th>
<th>ATV Median (range)</th>
<th>Geometric Mean Ratio (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0 (ART alone)</td>
<td>Day 21 (ART + NuvaRing)</td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>4291 (770, 9440)</td>
<td>3583 (84, 6578)</td>
</tr>
<tr>
<td>Cmin (ng/mL)</td>
<td>797 (BLQ, 2731)</td>
<td>599 (BLQ, 3599)</td>
</tr>
<tr>
<td>AUC_{0-24h} (h*mcg/mL)</td>
<td>44.31 (8.80, 91.77)</td>
<td>36.76 (10.85, 108.45)</td>
</tr>
<tr>
<td>AUC_{0-8h} (h*mcg/mL)</td>
<td>20.56 (4.41, 42.68)</td>
<td>18.32 (0.42, 43.88)</td>
</tr>
</tbody>
</table>

BLQ: Below the lower limit of quantitation, 20 ng/mL (n=3)

^AUC_{0-8h} n=21
Atazanavir concentration-time curve, median (IQR)

Proportion of participants with:
- $\text{AUC}_{0-24\text{h}}$ decrease = 14 of 23 (60.9%)
- ATV concentration <150 ng/mL: 4 of 23 (17.4%)
Ritonavir pharmacokinetic parameters (n=23)

<table>
<thead>
<tr>
<th></th>
<th>RTV Median (range)</th>
<th>Geometric Mean Ratio (90% CI)</th>
<th>Day 21:Day 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0 (ART alone)</td>
<td>Day 21 (ART + NuvaRing)</td>
<td></td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>1437 (426, 3078)</td>
<td>1063 (BLQ, 2297)</td>
<td>0.59*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.38, 0.91)</td>
</tr>
<tr>
<td>Cmin (ng/mL)</td>
<td>70.0 (BLQ, 1042)</td>
<td>51.9 (BLQ, 917)</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>(BLQ, 1042)</td>
<td></td>
<td>(0.38, 1.19)</td>
</tr>
<tr>
<td>AUC_{0-24h} (h*mcg/mL)</td>
<td>10.74 (3.92, 32.63)</td>
<td>7.21 (0.24, 31.73)</td>
<td>0.63*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.45, 0.89)</td>
</tr>
<tr>
<td>AUC_{0-8h} (h*mcg/mL)</td>
<td>6.75 (2.29, 15.88)</td>
<td>5.35 (0.08, 13.65)</td>
<td>0.66*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.46, 0.96)</td>
</tr>
</tbody>
</table>

BLQ: Below the lower limit of quantitation, 20 ng/mL (n=6)

*Wilcoxon Signed-Rank test <0.05

^AUC_{0-8h} n=21
Proportion of participants with:

- AUC_{0-24h} decreased = 16 of 23 (69.6%)
HIV-RNA at entry (Day 0) and after 21 days of vaginally administered contraception

<table>
<thead>
<tr>
<th>Treatment arm</th>
<th>Day 0</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV-RNA (copies/mL); median (range)</td>
<td>HIV-RNA (copies/mL); median (range)</td>
</tr>
<tr>
<td>EFV-based ART</td>
<td><40 (<40, 2071)</td>
<td><40 (<40, 3451)</td>
</tr>
<tr>
<td>HIV-RNA <400 copies/mL; n (%)</td>
<td>22 (96%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>HIV-RNA <40 copies/mL; n (%)</td>
<td>21 (91%)</td>
<td>20 (83%)</td>
</tr>
<tr>
<td>ATV/r-based ART</td>
<td><40 (<40, 327)</td>
<td><40 (<40, 98)</td>
</tr>
<tr>
<td>HIV-RNA <400 copies/mL; n (%)</td>
<td>23 (100%)</td>
<td>23 (100%)</td>
</tr>
<tr>
<td>HIV-RNA <40 copies/mL; n (%)</td>
<td>21 (91%)</td>
<td>20 (87%)</td>
</tr>
</tbody>
</table>
Conclusions and Discussion

• We observed moderately lower EFV (13-36%) and RTV (34-41%) concentrations after 21 days of continuous vaginal ring (ethinyl estradiol/etonogestrel) contraceptive use.

• Despite lower RTV exposure, ATV exposure was not statistically different.

• Median Cmin values remained within the expected range for each antiretroviral at Day 21.
 - Four participants in each ART group had at least one EFV or ATV concentration below a conservative concentration threshold.

 • 1 of 8 participants plasma HIV-RNA increased from <40 copies/mL at entry to 54 copies/mL on Day 21.
 • 7 of 8 remained virologically suppressed.

• Despite lower ARV concentrations, a significant DDI was still observed with the combined hormonal contraceptive (Scarsi et al. CROI 2017).
We gratefully acknowledge the dedication of the study participants and site personnel.

University of Nebraska Medical Center
Courtney Fletcher
Sue Swindells
Anthony Podany
Kayla Campbell
Lauren Cirrincione

A5316 Core Team
Susan E. Cohn & Kimberly K. Scarsi: Co-Chairs
Kristine B. Patterson & Carmen Zorrilla: Vice-Chairs
Fran Aweeka: Pharmacologist
Sue Rosenkranz & Yoninah Cramer: Biostatisticians
Alan Landay: Immunologist
Bob Coombs: Virologist
Katy Godfrey: DAIDS Medical Officer
Thucuma Sise: Protocol Pharmacist
Kristine Coughlin: Data Manager
Andee Fox: Laboratory Data Manager
Baiba Berzins: Field Representative
Cecilia Chang-Ching & Dave Shugarts: Laboratory Technologists
Laura Moran: Clinical Trials Specialist
Liz Barr: CSS Representative
Mary Allegra Cermak: Site Support Specialist

A5316 Sites
Instituto de Pesquisa Clinica Evandro Chagas
Rush University Cook County Hospital
KISUMU/Kenya Medical Research Institute
New Jersey Medical School
The Miriam Hospital
Barranco
San Miguel
Gaborone
Thai Red Cross AIDS Research Center
Chiang Mai University HIV Treatment
USC LA
University of Colorado Denver
David Geffen School of Medicine at UCLA
Wits RHI Shandukani Research Center
Alabama
Jacobi Medical Center Bronx
San Juan City Hospital
University of Florida Jacksonville
Puerto Rico AIDS CTU
University of Puerto Rico Pediatric HIV/AIDS Research Program
Columbia University P&S

Supported by the ACTG and IMPAACT through NIAID (UMI AI068636; UMI AI068634; UMI AI106701; UM1AI068632; UM1AI068616; UM1AI106716) and NICHD (HHSN275201300003C). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We gratefully acknowledge the support of Merck for providing NuvaRing® for use in this study.