Does hepatic impairment affect the exposure of mAbs?

Qin Sun

Division of Clinical Pharmacology IV,
Office of Clinical Pharmacology,
OTS/CDER/OMPT/FDA, Silver Spring, MD

Research team:
Qin Sun, Shirley Seo, Simbarashe Zvada, Chao Liu, Kellie Reynolds

Disclaimer:
The research reflects the views of the authors and should not be construed to represent the FDA’s views or policies. The mention of commercial products in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA.
Background and Objective

➢ Increased efforts to evaluate mAbs to treat different diseases, including viral infections

➢ No FDA guidance or EMA guidance on hepatic impairment (HI) effect on exposure of mAbs

➢ FDA 2013 paper (~ 90 therapeutic proteins (TPs) approved through 2013):
 7 TPs (only 3 mAbs) with HI information
 results inconclusive due to limited data
 Clin Ther. 2013, 35, 1444

➢ Patients with HI included in target population for many mAbs
 Patients may develop hepatic dysfunction as diseases progress

➢ Knowledge essential for dosing strategy in patients with HI
Methods and Results

➢ New available HI data for TPs, especially for mAbs:
 TPs approved between Jan 2013 and Mar 2018 (n=45, 31 mAbs)
 TPs approved before 2013 with updated information (n=~90)

➢ TPs with new HI data:
 18 mAbs, 4 ADCs, other TPs (2 fusion proteins, 1 growth factor, 1 hormone)
 Almost no data for severe HI (n=0 or 1 for all)
 Limited data for moderate HI (4 mAbs and 2 ADCs with n≥5)
 Sufficient data for mild HI (~ 20 mAbs with n=tens to hundreds)

➢ Sig. exposure decrease for several mAbs and ADCs (not small molecule part):
 Ado-trastuzumab emtansine ADC: ↓ 40%/70% in mild/moderate HI
 Evolocumab: ↓ 40%/50% in mild/moderate HI
 Brentuximab vedotin ADC: ↓ 35% moderate HI

Trend for AUC decrease: bezlotoxumab, alirocumab etc.
Lower albumin level associated with lower exposure for additional mAbs and ADCs

Poster #: 15
Discussion and Conclusions

➢ Potential mechanisms:

FcRn binding: HI → increased endogenous IgG → competitive FcRn binding → decreased exposure of mAbs or ADCs

endogenous IgG level inversely related to mAb t1/2 in different diseases

TMDD: breast/other cancers → liver metastases → hepatic dysfunction (higher tumor burden for cancer patients w/ HI) → higher TMDD (if involved) for certain mAbs or ADCs

FcγR binding: HI → increased cytokines → increased FcγR-mediated elimination (with soluble immune complexes/effecter functions/increased FcγR binding)

➢ Conclusions:

HI may impact the disposition of mAbs (or ADCs due to mAb part)

Additional data are needed, particularly for moderate and severe HI to inform drug development and dose strategies