Intracellular 007-TP Concentrations are Associated with Gradients of Adherence to Ledipasvir/Sofosbuvir

Leah C. Jimmerson¹, Mary M. Morrow², Samantha Mawhinney², Jose Castillo-Mancilla³, Ryan T. Huntley¹, Josh Blum⁴, David Wyles⁴, Sarah E. Rowan⁴, Steven Johnson³, Sara Scherrer³, Kristina M. Brooks¹, Christine E. Macbrayne¹, Lane R. Bushman¹, Peter L. Anderson¹, Jennifer J. Kiser¹

1. University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO
2. University of Colorado Department of Public Health, Aurora, CO
3. University of Colorado Hospital Department of Infectious Diseases, Aurora, CO
4. Denver Health, Denver, CO

MAY 23, 2018
INTERNATIONAL WORKSHOP ON CLINICAL PHARMACOLOGY OF ANTIVIRAL THERAPY 2018, BALTIMORE, MD

Abstract #2
Financial Disclosures

- I have no conflicts of interest to report
Background: Significance

- HIV/HCV infected persons who use drugs are an under-treated and under-represented population
 - Concern of low adherence
 - Re-infection potential especially for injection drug users
 - Restrictions on treatment eligibility

- Co-infected HIV/HCV patients are at a higher risk for liver failure, cirrhosis and death but are underrepresented in clinical trials with DAAs

- Knowledge gaps in the pharmacology of DAAs in this population

- Unknown relationship between adherence and PK
Sofosbuvir metabolism

- Sofosbuvir (SOF) is transported into cells and metabolized to a uridine-monophosphate analog and an active triphosphate analog inside cells (007-TP, originally GS-461203)
Aims of the study

1. Define 007-TP PK in a HIV/HCV co-infected, drug using population.
2. Determine the association between [007-TP] in DBS and PBMCs and adherence to LDV/SOF.
Study Design

N=60 HIV/HCV infected persons who use drugs

vDOT
N=19

WOT
N=20

LDV/SOF

Day 1 Wk 2 Wk 4 Wk 6 Wk 8 Wk 10 Wk 12 Off-drug
(pre, 1-18h, 24h)
Sample=Blood tube + DBS card

Adherence (ADH)=#doses taken/#prescribed between visits
Methods

*Quantification of 007-TP:
- LC-MS/MS in 50-50,000 fmol/sample range
- Sample=7mm punch or 1-2million PBMCs

Stats:
- Mixed models used to allow for repeated measures
- Final ADH results modeled as both as continuous and categorical (≤50%, >50-75%, and >75%)
- One-phase decay for \(t_{1/2} \) calculation

Demographics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Data N=39</th>
<th>%</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>non black</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Hispanic</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td></td>
<td></td>
<td>71 (63, 78)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td>51 (46, 55)</td>
</tr>
<tr>
<td>HCV GT</td>
<td>1a</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>eGFR (mL/min/1.73^2)</td>
<td></td>
<td></td>
<td>84 (43, 162)</td>
</tr>
<tr>
<td>Therapy</td>
<td>DOT</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WOT</td>
<td>51%</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td></td>
<td>21%</td>
<td></td>
</tr>
</tbody>
</table>
Demographics: ADH

<table>
<thead>
<tr>
<th>N=39 subjects #ADH obs=227</th>
<th>N</th>
<th>#ADH Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 50% \text{ ADH})</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>>50-75% ADH</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>>75% ADH</td>
<td>38</td>
<td>191</td>
</tr>
</tbody>
</table>

ADH= number of doses taken/number prescribed between each visit

Overall ADH over 12 weeks: Median (range) 94\% (7\%, 100\%)
007-TP PK

DBS GM (95%CI): 616 (447, 783) fmol/punch

PBMCs GM (95%CI): 1820 (1212, 2596) fmol/10^6 cells

DBS t½ = 104 (59-182) hours

PBMCs t½ = 26 (15, 110) hours
Results: Adherence and DBS

- For every 10% increase in ADH, DBS 007-TP increased 7.0% (95% CI 3.8%, 10%)
 P<0.0001
Results: 007-TP/punch by ADH category

Overall $P=0.002$
Results: Adherence and PBMCs

• For every 10% increase in ADH, PBMC 007-TP increased 23% (95% CI 15%, 31%) P<0.0001
Results: 007-TP PBMCs by ADH category

Overall p<0.0001
Covariate Analysis DBS

<table>
<thead>
<tr>
<th>Effect variable</th>
<th>Univariate</th>
<th></th>
<th></th>
<th>Multivariate</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Change 007-TP</td>
<td>P Val</td>
<td>%Change 007-TP</td>
<td>P Val</td>
<td>%Change 007-TP</td>
<td>P Val</td>
</tr>
<tr>
<td>*ADH</td>
<td>8.67%</td>
<td><.0001</td>
<td>8.66%</td>
<td><.0001</td>
<td>8.66%</td>
<td><.0001</td>
</tr>
<tr>
<td>Weight</td>
<td>-1.45%</td>
<td>0.014</td>
<td>-1.30%</td>
<td>0.019</td>
<td>-0.29%</td>
<td>0.396</td>
</tr>
<tr>
<td>eGFR</td>
<td>-0.68%</td>
<td>0.037</td>
<td></td>
<td></td>
<td>0.68%</td>
<td>0.037</td>
</tr>
<tr>
<td>Race</td>
<td>69.9%</td>
<td>0.002</td>
<td>24.9%</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>-20.3%</td>
<td>0.313</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.03%</td>
<td>0.270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT vs WOT</td>
<td>-14.0%</td>
<td>0.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ref group (0)=non-black, female, WOT

*ADH is per 10% increase, not winsorized
Covariate Analysis PBMCs

<table>
<thead>
<tr>
<th>Effect variable</th>
<th>Univariate</th>
<th></th>
<th>Multivariate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Change</td>
<td>P Val</td>
<td>%Change</td>
<td>P Val</td>
</tr>
<tr>
<td></td>
<td>007-TP</td>
<td></td>
<td>007-TP</td>
<td></td>
</tr>
<tr>
<td>*ADH</td>
<td>27.0%</td>
<td><.0001</td>
<td>23.8%</td>
<td><.0001</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.62%</td>
<td>0.463</td>
<td>-0.68%</td>
<td>0.265</td>
</tr>
<tr>
<td>eGFR</td>
<td>-0.83%</td>
<td>0.057</td>
<td>-0.54%</td>
<td>0.155</td>
</tr>
<tr>
<td>Race</td>
<td>93.7%</td>
<td>0.006</td>
<td>9.67%</td>
<td>0.683</td>
</tr>
<tr>
<td>Sex</td>
<td>-57.8%</td>
<td>0.002</td>
<td>-44.9%</td>
<td>0.008</td>
</tr>
<tr>
<td>Age</td>
<td>0.22%</td>
<td>0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT vs WOT</td>
<td>-5.42%</td>
<td>0.810</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ref group (0)=non-black, female, WOT

*ADH is per 10% increase, not winsorized
Conclusions

- Half-life estimations support cumulative dosing of SOF (104 h in DBS, 26 h PBMC)

- ADH was the most significant predictor of 007-TP levels, remained after controlling for other covariates

- 007-TP levels were significantly lower in <50-75% ADH categories
Future directions

- Develop a PK model that can predict ADH based on 007-TP levels in both DBS and PBMCs

- Further exploration of univariate and multivariate predictors after study completion

- Determine relationship between cure and ADH
 - 3/36 subjects with SVR 12 visit were virologic failures
Acknowledgments

- CAVP laboratory
 - Jennifer Kiser, PharmD
 - Peter Anderson, PharmD
 - Ryan Huntley, BS
 - Ryan Coyle, BA
 - Kristina Brooks, PharmD
 - Cricket McHugh, BA
 - Lane Bushman, BS
 - Teisan Zheng, PhD
 - Becky Kerr, BS
 - Lucas Ellison, BA
 - Laura Roon, BA/BS
 - David Nerguzian, BS
 - Martin Williams, BS
 - Bethany Johnson, BA
 - Joe Gomez, BS

- Department of Public Health
 - Mary Marrow, MS
 - Samantha MaWhinney, PhD

- Denver Health
 - David Wyles, MD
 - Josh Blum, MD
 - Sarah Rowan, MD

- University of Colorado Hospital and CCTSI
 - Jose Castillo-Mancilla, MD
 - Steven Johnson, MD
 - Sara Scherrrer, MD

- Funding
 - National Institute on Drug Abuse - 1R01DA040499-01
 - NIH/NCATS Colorado CTSA Grant Number UL1 TR002535
 - Gilead Sciences