Gut microbiota from high risk men who have sex with men drive immune activation in gnotobiotic mice and in vitro HIV infection

Sam Li
University of Colorado
Anschutz Medical Center
Microbiome differences associated with MSM and HIV

- **HIV- MSW**: Bacteroides
- **HIV- MSM**: Prevotella, H. biformis, Desulfovibrio
 - Peripheral and colonic T cell activation
 - **??** HIV infection?
- **HIV+ MSM**: Prevotella, T. sanguinisis
 - Induces higher immune activation than MSM-associated microbiome in vitro
 - (Neff 2018 eBioscience)
 - (Armstrong 2018 BioRxiv)
Fecal transplant to gnotobiotic mice

MSW (HIV-)

MSM (HIV-)

MSM (HIV+)

21 days

gut tissue: immuno-phenotype

feces: 16S seq
MSM-associated composition differences are transferred.
Colonization fidelity consistent across groups

Donor-recipient unweighted unifrac distance

% Engraftment

Relative vector distance

% sequence variants transferred

HIV: - - +

MSW MSM MSM

Colonization fidelity consistent across groups
Compositional changes following transfer to mice
Specific bacterial differences with MSM recapitulated in mice

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Recipients</th>
<th></th>
<th></th>
<th></th>
<th>Donors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HIV- MSW</td>
<td>HIV- MSM</td>
<td>HIV+ MSM</td>
<td></td>
<td>HIV- MSW</td>
<td>HIV- MSM</td>
<td>HIV+ MSM</td>
</tr>
<tr>
<td>Increased with MSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desulfovibrio desulfricans</td>
<td>0.00E+00</td>
<td>6.49E-03</td>
<td>5.63E-03</td>
<td></td>
<td>0.00E+00</td>
<td>2.42E-04</td>
<td>3.12E-04</td>
<td></td>
</tr>
<tr>
<td>Holdemanella biformis</td>
<td>4.46E-05</td>
<td>1.27E-03</td>
<td>1.86E-03</td>
<td></td>
<td>6.29E-04</td>
<td>1.63E-02</td>
<td>1.41E-02</td>
<td></td>
</tr>
<tr>
<td>Howardella ureilytica</td>
<td>0.00E+00</td>
<td>1.61E-04</td>
<td>2.58E-04</td>
<td></td>
<td>0.00E+00</td>
<td>1.38E-04</td>
<td>3.90E-05</td>
<td></td>
</tr>
<tr>
<td>Decreased with MSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium leptum</td>
<td>9.54E-04</td>
<td>1.45E-04</td>
<td>7.52E-04</td>
<td>7.49E-04</td>
<td>1.63E-04</td>
<td>2.38E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides uniformis</td>
<td>1.39E-01</td>
<td>5.68E-02</td>
<td>4.31E-02</td>
<td>3.35E-02</td>
<td>4.32E-03</td>
<td>4.29E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonifractor plautii</td>
<td>2.05E-03</td>
<td>2.54E-04</td>
<td>2.98E-03</td>
<td>5.09E-04</td>
<td>1.21E-04</td>
<td>6.63E-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immune activation is higher in recipients of HIV- and HIV+ MSM
Immune activation in mouse recipients and donors correlate

Donor vs Recipient CD8 T cell activation

Donor CD4 T cell gut homing vs Recipient gut CD4 T cell activation

Mouse colon
%CD69+ CD4 T cells

Spearman r = 0.521
p = 0.048

Mouse ileum
%CD69+ CD8 T cells

Spearman r = 0.313
p = 0.0492

HIV-neg donor blood
%CD103+ CD4 T cells

Donor vs Recipient
CD8 T cell activation

HIV-neg donor blood
%CD38+ HLADR+ CD8 T cells
HIV- and HIV+ MSM microbiota stimulate in vitro HIV infection

In vitro HIV infection following FBC stimulation

Media HIV-
HIV-
HIV+

HIV-1 gag+

FBC:

* *

% HIV-1 gag+

Uninfected
Infected + Media

Infected + MSM (HIV-)
bacteria
Infected + MSM (HIV+)
bacteria

SSC-A

FSC-A

HIV-1 gag

SSC-A

HIV-1 gag

0 10 20 30 40 50

HIV-1 gag+

FBC: Media HIV- MSM HIV- MSM HIV+ MSM
Consistent microbial correlates across recipients and donors

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Recipients</th>
<th>Donors</th>
<th>In vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ileum T cell activation</td>
<td>Colon T cell activation</td>
<td>Blood T cell activation</td>
</tr>
<tr>
<td>Negatively correlated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akkermansia muciniphila</td>
<td>-0.27</td>
<td>-0.40</td>
<td>-0.36</td>
</tr>
<tr>
<td>Oscillibacter ruminantium</td>
<td>-0.27</td>
<td>-0.42</td>
<td></td>
</tr>
<tr>
<td>Bacteroides uniformis</td>
<td>-0.27</td>
<td>-0.42</td>
<td></td>
</tr>
<tr>
<td>Pseudoflavonifractor capillosus</td>
<td>-0.26</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>Positively correlated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catenibacterium mitsuokai</td>
<td>0.35</td>
<td>0.40</td>
<td>0.44</td>
</tr>
<tr>
<td>Oscillibacter valericigenes</td>
<td>0.41</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Howardella ureilytica</td>
<td>0.40</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>Desulfovibrio piger</td>
<td>0.25</td>
<td>0.40</td>
<td>0.44</td>
</tr>
<tr>
<td>Clostridium leptum</td>
<td>0.42</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Holdemanella biformis (1)</td>
<td>0.31</td>
<td>0.44</td>
<td>0.61</td>
</tr>
<tr>
<td>Holdemanella biformis (2)</td>
<td></td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>Butyricimonas faecihominis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Addition of a single bacteria to MSW microbiome increases immune activation.
P. distasonis reduces immune activation by HIV+ microbiome

Colon CD4+ T cell activation

$p = 0.051$
Summary

• HIV- MSM donors have higher blood T cell activation and CD103+ T cell frequencies than HIV- MSW donors

• Fecal transplant results in engraftment of MSM-associated microbiome differences that maintain a distinct composition in mice

• These differences result in increased gut immune activation in mouse recipients (which correlated with donor immune activation), and in vitro HIV infection

• Addition of a single bacteria to the microbiome from HIV-negative MSW or HIV-positive MSM can respectively increase or decrease immune activation in mouse recipients