Broadly Neutralizing Antibodies for Treatment and Prevention of HIV-1

Daniel R. Kuritzkes, M.D.
Division of Infectious Diseases
Brigham and Women’s Hospital
Harvard Medical School
Disclosures

The speaker has received consulting honoraria, speaker fees or research grants from the following companies:

- Gilead
- GlaxoSmithKline
- Janssen
- Merck
- ViiV
Outline

- Basic facts about bNAbs
- Pre-clinical data
- Human clinical trials data
- Translating bNAbs into practice
- Challenges and conclusions
Basic Facts about bNAbs
Broadly neutralizing antibodies

- Human monoclonal antibodies able to neutralize a wide range of HIV-1 isolates

- Target HIV-1 envelope

- Enhance various effector functions
 - Complement-mediated lysis
 - ADCC, ADCP
 - Increase HIV-1 specific immune responses

- Can be genetically engineered to combine multiple specificities or extend half-life
Broad neutralization by VRC01 mAb

<table>
<thead>
<tr>
<th>Titer</th>
<th>VRC01</th>
<th>b12</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀ < 50 µg/ml</td>
<td>91%</td>
<td>41%</td>
</tr>
<tr>
<td>IC₅₀ < 1 µg/ml</td>
<td>72%</td>
<td>17%</td>
</tr>
<tr>
<td>Geometric mean IC₅₀ (µg/ml)</td>
<td>0.33</td>
<td>1.79</td>
</tr>
</tbody>
</table>
Binding sites for HIV-1 bNAb

Potential clinical uses of bNAbs

A. HIV-1 Treatment Intensification
 - ART
 - bNAbs
 - Improvement of HIV-1 Therapy by concomitant treatment with classical ART and bNAbs

B. Maintaining HIV-1 suppression
 - ART
 - bNAbs
 - In viral-controlled HIV-1* individuals: Preventing viral rebound by bNAb administration

C. HIV-1 Immunotherapy
 - bNAbs
 - Possible HIV-1 treatment alternative (e.g. in the case of multi-drug resistance, ART intolerance, etc.)

D. HIV-1 Prevention
 - bNAbs
 - Pre- and Post-exposure prophylaxis; pMTCT (for late presenters)

Adapted from Klein F et al Science 2014
Potential advantages of bNAbs for PrEP or ART

- Infrequent dosing
- No cross-resistance with standard ARVs
- Established paradigms for therapeutic use of mAbs in other disease areas
- Potential for overcoming adherence challenges
- Potential for less stigma
- Potential to enhance HIV-specific immunity
bNAbs: Pre-clinical data
Antiviral activity of 3BNC117 and 10-1074 against SHIV in chronically infected NHP model

Shingai M et al Nature 2013
Martin M CROI 2018 Abstr 49
Effect of single or dual bNAb treatment in acute SHIV model
Single-dose of bNAbs protects against repeated rectal SHIV\textsubscript{AD8-EO} challenge

Guatam R et al Nature 2016
Human Clinical Trials
Single-dose PK of VRC01

Lynch RM et al Science Transl Med 2015
Efficacy trials of VRC01 as PrEP

- **AMP (HVTN 703/HPTN 081)**
 - Phase 2b study of q8 wk VRC01 (2 dose groups) vs placebo
 - 1500 women in sub-Saharan Africa
 - PrEP permitted but not study provided

- **AMP (HVTN 704/HPTN 085)**
 - Phase 2b study of q8 wk VRC01 (2 dose groups) vs placebo
 - 2700 MSM and transgender women
 - North and South America
 - PrEP permitted but not study provided
Single dose PK of 3BNC117

Caskey M et al Nature 2015
Cohen Y et al CROI 2018 Abstr 1062
Pharmacokinetics of the V3 Glycan-Dependent Broadly Neutralizing Antibody PGT121 in Humans

Mean Elimination Half-Life: 20 days

Dan Barouch, Katy Stephenson, Boris Julg, unpublished data
LS modification prolongs VRC01 half-life

Gaudinski MR et al PLoS Medicine 2018
Gaudinski MR et al CROI 2018 Abstr 1061
Antiviral activity of VRC01
Enhancement of autologous virus neutralization after bNAb administration

Schoofs T et al Science 2016
Failure of VRC01 monotherapy to maintain viral suppression

A A5340 Trial

B NIH Trial

Emergence of VRC01-resistant variants during ART interruption

Treatment interruption post BCN117

Neutralization activity of bNAbs against clade C virus panel

Wagh K et al PLoS Pathogens 2016
Extent of neutralization by multiple active bnAbs from best-in-category combinations

A. Best 2 bnAb combinations
B. Best 3 bnAb combinations
C. Best 4 bnAb combinations

bnAbs: CD4bs
 a. VRCC07-523
 b. CAP256-VRCC26.25
 c. 10-1974

 V2q:
 a. 3BNC117
 b. PGDM1400
 c. PGT128

 V3q:
 a. MPER
 b. 10E8
bNAb combinations protect against mixed SHIV challenge in macaques
Tri-specific bNAb (SAR 441236)

![Diagram of Tri-specific bNAb](image)

<table>
<thead>
<tr>
<th>Antibody</th>
<th>SHIV BaLP4</th>
<th>SHIV 325c</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRC01</td>
<td>0.067</td>
<td>>50</td>
</tr>
<tr>
<td>PGDM1400</td>
<td>>50</td>
<td>0.015</td>
</tr>
<tr>
<td>VRC01/PGDM1400-10E8v4</td>
<td>0.055</td>
<td>0.168</td>
</tr>
</tbody>
</table>

Pegu A et al CROI 2018 Abstract 113LB.
Tri-specific bNAb protects against mixed SHIV challenge

Xu L et al Science 2017
Translating bNAbs into Practice
Draft Target Product Profile for mAb Prevention

<table>
<thead>
<tr>
<th>Product</th>
<th>Two IgG mAbs (or one bi-tri-specific)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
<td>Prevention of HIV infection</td>
</tr>
<tr>
<td>Efficacy Profile</td>
<td>Prevents infection by > 98% strains</td>
</tr>
</tbody>
</table>
| **Target Population** | Adolescents/adults: high-risk of HIV infection
Infants of HIV* mothers: at birth; during breastfeeding |
| **Dosage Administration** | Adolescents/adults: 5 mg/kg SC q3-6 months
Infants: one dose (20 mg/kg SQ) at delivery |
| **Safety/Tolerability** | Adverse event frequency – rare |
| **Cost of Goods** | < $50 per person, per year |

Hinges on human efficacy data, commercial interest in producing mAbs for broad use

Courtesy of DAIDS and VRC, NIAID
Draft Target Product Profile of bNAbs for HIV Treatment

- **Easy, convenient dosing**
 - Q 4wk or less frequent (target q 6 mo) – similar $T_{1/2}$ if more than one bNAb
 - Home (SC) or infusion center (IV) administration
 - Single needle stick if possible (coformulation > coadministration > sequential IV administration)

- **Potent and durably suppresses HIV replication**
 - Drug/regimen covers all viruses (95-98%) at target plasma concentration (min 2 bNAbs/virus)
 - <30 mg/kg, ideally <1 mg/kg
 - No need for susceptibility testing
 - Achieves/maintains max viral suppression >48 wk
 - Infrequent emergence of escape/resistant virus

- **Safe**
 - Low risk of anaphylaxis or immune complex disease (low frequency/concentration of ADAs)
 - Rare SAEs with no increase in markers of chronic inflammation or immune activation

- **Affordable**
 - No more expensive than current first line therapy

Courtesy of DAIDS and VRC, NIAID
Challenges and Conclusions
Challenges in clinical development

- Choosing optimum bNAb combinations for human trials
- Dose-finding
 - How much?
 - How often?
 - Can dose-finding studies in macaques be translated to humans?
- Potential for ADA with non-natural bNAbs
- Emergence of bNAb-resistant virus
 - Need for susceptibility testing?
- Improving formulations
 - s.c. vs i.v.
- Sample size for prevention studies
Challenges in clinical use of bNAbs

- **Acceptability of infusion or injectable ART/PrEP**
 - IV or SC administration
- **Dosing frequency**
- **Cost**
- **Capacity**
- **Global access**
 - (see also Cost and Capacity, above)
Conclusions

- bNABs show promise as long-acting agents for treatment and prevention of HIV-1 infection
- Most likely will require combinations or bi-/tri-specific bNABs
- Efficacy and long-term safety remain to be determined
- Effects on the HIV-1 reservoir remain to be demonstrated
- Cost may be a significant barrier to wide adoption
- Advances in formulation and delivery are needed to simplify administration and maximize uptake
Acknowledgments

- Vaccine Research Center
 - Lucio Gama
 - Richard Koup
 - Julie Ledgerwood
 - John Moscola

- NIAID/Division of AIDS
 - Sarah Read
 - Randall Tressler
 - Sheryl Zwerski

- Rockefeller University
 - Marina Caskey
 - Yehuda Cohen
 - Michel Nussenzweig

- University of North Carolina
 - Joseph Eron

- Beth Israel Deaconess Medical Center
 - Dan Barouch
 - Boris Juelg
 - Katherine Stephenson

- University of Pennsylvania
 - Katherine Bar
 - Pablo Tebas

- Sanofi
 - Carla Lawendowski
 - Jooyun Lee

- Johns Hopkins
 - Charles Flexner