Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis

Liz Tucker, Assistant Professor of Pediatric Critical Care Medicine
On behalf of Lisa Pieterse, Matthew D. Zimmerman, Zarir F. Udwadia, Charles Peloquin, Maricelle Gler, Shashank Ganatra, Jeffrey Tornheim, Prerna Chawla, Janice Caoilli, Sanjay K. Jain, Veronique Dartois, Kelly E. Dooley

International Workshop on Clinical Pharmacology of Tuberculosis Drugs

10/23/18
Disclosures

• Otsuka provided Delamanid for the animal studies
Background: CNS Tuberculosis

- Most severe form of extrapulmonary TB
- **TB meningitis (TBM)** accounts for 0.5-1%
- Disproportionately high mortality and morbidity
 - Young children
 - HIV co-infection
- Meningeal exudate
- Hydrocephalus
- Vasculitis leads to strokes

References:

Background: Treatment

• **Fatal** without treatment

• Current regimen for sensitive
 – RIF, INH, PZA, S (adult)
 – RIF, INH, PZA & EMB (children)
 – Steroids

• **Poor CNS penetration**
 – EMB, RIF

• **Multidrug Resistance (MDR):**
 – Rifampin-resistance associated with **94%** mortality
 – HIV-associated TBM:
 • INH-resistance **1.78 fold** increased risk of death
 • MDR-TBM uniformly **fatal**

Vinnard C CID 2017; Tho DQ AAC 2012; Ruslami R Lancet ID 2013; Heemskerk AD NEJM 2016
Exudative Meningitis and Tuberculoma

Neurobehavioral Deficits

Tucker et al, DMM 2016
11C-Rifampin PET Bioimaging

- Rifampin is **KEY** anti-mycobacterial
- Bactericidal BUT poor CNS penetration
- Dynamic PET imaging to elucidate pharmacokinetics and penetration into lung granuloma

DeMarco, Jain et al 2015
Paucity of 11C-Rifampin Signal in Brain

Tucker, Ordonez, Peloquin, Jain et al, Manuscript Under Review
Paucity of 11C-Rifampin Signal in Brain

M. tuberculosis-Infected

Tucker, Ordonez, Peloquin, Jain et al, Manuscript Under Review
Decreased 11C-Rifampin Penetration into Brain Lesion with Treatment

Time-activity curves (TAC) of ONE rabbit imaged over weeks of treatment

Area under the curve (AUC) ratios of brain lesion/plasma comparing ALL rabbits imaged over weeks of treatment

Tucker, Ordonez, Peloquin, Jain et al, Manuscript Under Review
Rifampin Mass Spec shows Decreased Rifampin Penetration Overtime

Tissue/tissue ratio (brain/plasma)

Week 0 2 3 4 0 2 3 4

Brain (lesion) CSF

Tucker, Ordonez, Peloquin, Jain et al, Manuscript Under Review
Background: Delamanid

- New TB drug by Otsuka Pharmaceutical Co., Ltd.
- Nitro-dihydro-imidazooxazole derivative
- Active against *Mycobacterium tuberculosis*
 - Inhibits mycolic acid synthesis
 - MIC_{95} on agar media w/ 0.5% albumin = 12 ng/mL
- Side effects: Prolonged QTc, depression, headache
- Currently approved in European Union, Japan & Korea for 2nd line therapy (2014)
 - MDR
 - Improved sputum clearance in pulm MDR-TB
- PK studies in rats demonstrated distribution into CNS, eyes, placenta and fetus
 - Higher levels in tissue compared to plasma

Sasahara K DMM 2015; Shibata M BDD 2017; Gler MT ENJM 2012;
Delamanid Rabbit Protocol

• 6-7 weeks old (~ teenagers)
 – Uninfected (PBS)
 – Infected (M. tuberculosis)

• Delamanid 5 mg/kg via NG

• Plasma
 – 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 24, 36, & 48 hr

• CSF & Brain sample
 – Terminal samples
 – 9 & 24 hr
Delamanid Results

Cmax of adults from trials: median = 357 ng/mL (range 124-1000); \(\text{MIC}_{95} = 12 \text{ ng/mL} \)
Delamanid Results

MIC

$\text{MIC}_{95} \ 12 \ \text{ng/mL}$

Graphs

- **CSF**
 - Delamanid Infected: Blue
 - DM-6705 Infected: Red
 - Delamanid Uninfected: Green
 - DM-6705 Uninfected: Purple

- **Brain**
 - Delamanid Infected: Blue
 - DM-6705 Infected: Red
 - Delamanid Uninfected: Green
 - DM-6705 Uninfected: Purple
Delamanid Results

Delamanid CSF/Plasma ratio

Delamanid Brain/Plasma ratio

- **Infected**
- **Control**
Clinical Relevance

• So what about patients?
Patient with TBM-Mumbai

- 26 year old female
- No co-morbidities or hx of TB/TB contact
- Presentation:
 - Cough, fever, HA with decrease vision bilaterally
 - CSF GeneXpert: *M. tuberculosis* detected
 - Rifampin resistance detected
- Imaging:
 - Brain MRI: meningeal enhancement with tuberculomas
- Course:
 - Started on 2nd line drugs & steroids
 - MGIT confirmed XDR-TBM
 - Initially good clinical & radiologic improvement
 - **BUT relapsed** 3 months after treatment stopped
 - **Delamanid** started & clinical samples obtained 5 wks later
 - Capreomycin, Meropenem, Augmentin, Clofazimine, Linezolid, Cycloserine, *para*-aminosalicylic acid (PAS)
Patient with TBM-Philippines

- 35 year old male
- HIV+
- Presentation:
 - Diagnosed October 2016
 - CSF: WBC 147 cells/µL, protein 96.10 mg/dL
 - CSF: culture grew *M. tuberculosis*; smear AFB+
 - Rifampin & INH resistance detected
- Course:
 - Started on Levofloxacin, Amikacin, Prothionamide, Linezolid, Meropenem, Bactrim, Augmentin
 - Initially improvement (CSF WBC 6 cells/µL, protein 64.57)
 - **BUT worsened** with RLE weakness with new nodules on MRI
 - CSF WBC 486 cells/µL, protein 5319.89
 - **Delamanid** started & clinical samples obtained 5 months later
 - Meropenem, Bedaquiline, Linezolid, Bactrim, Augmentin
Delamanid Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ng/mL)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delamanid (Lab 1)</td>
<td>Delamanid (Lab 2)</td>
<td>DM-6705</td>
</tr>
<tr>
<td>Plasma T = 0 HR</td>
<td>550</td>
<td>773.5</td>
<td>109.3</td>
</tr>
<tr>
<td>Plasma T = 2 HR</td>
<td>450</td>
<td>572.6</td>
<td>86.3</td>
</tr>
<tr>
<td>Plasma T = 4 HR</td>
<td>750</td>
<td>1082.8</td>
<td>96.3</td>
</tr>
<tr>
<td>Plasma T = 7 HR</td>
<td>740</td>
<td>848.3</td>
<td>95</td>
</tr>
<tr>
<td>CSF (4h) No Heparin</td>
<td>BLQ</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>CSF w/ Heparin</td>
<td></td>
<td>1.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Mumbai with XDR TBM
Delamanid 100mg BID

CSF/Plasma ratio = 0.16%

Philippines with XDR TBM
Delamanid 100mg BID

CSF/Plasma ratio = 7%

Cmax of adults from trials: median = 357 ng/mL (range 124-1000); MIC\textsubscript{95} 12 ng/mL
Patients – Where are they now?

• **Mumbai**
 – Completed 24 weeks of Delamanid
 – Off steroids
 – No HA or vision changes

• **Philippines**
 – Currently still receiving Delamanid (along with Bedaquiline and Linezolid)
 – Off steroids
 – Awake and alert
 – Receiving rehab to improve ambulation
Conclusions

• Delamanid CSF levels are low in TBM patients and rabbits
• High Delamanid brain levels in rabbits compared to plasma
 – Trend for higher in uninfected brain

• Can drugs with low CSF concentrations but high brain concentrations work for TBM?
 – CSF has low numbers of bacilli with unknown viability
 – Unknown degree & effect of protein binding
 – Antifungals work:
 • Amphotericin and Isavuconazole for Cryptococcus (low CSF levels)
 • Echinocandins for Candidal meningoencephalitis (poor CSF penetration but good efficacy)

• In order to develop optimal regimens, there need to be more preclinical and clinical data coupled with PK-PD modeling to integrate the data
Acknowledgements

Johns Hopkins Center for Tuberculosis Research &
Center for Infection & Inflammation Imaging Research
Sanjay Jain’s Lab
Alvaro Ordonez
Mariah Klunk
Lisa Pieterse

Johns Hopkins Division of Clinical Pharmacology and
Infectious Diseases
Kelly E. Dooley

Hinduja Hospital, Mumbai, India
Jeffrey Tornheim
Zarir Udwadia
Shashank Ganatra
Tester Ashaviad
Prerna Chawla

Makati Medical Center, Makati City, Philippines
Maricelle Gler
Janice Caolli

Otsuka
Lawerence Geiter
Yongge Liu
Jeffrey Hafkin

Public Health Research Institute, New Jersey Medical
School, Rutgers, The State University of New Jersey
Veronique Dartois’ Lab
Matthew D. Zimmerman

University of Florida Infectious Disease
Pharmacokinetic Lab
Chuck Peloquin

Johns Hopkins All Children’s Hospital Center for
Resources in Integrative Biology and Molecular
Determinants Core

Funding
All Children’s Hospital Foundation Grant (E.W.T.)
NIH NICHD PCCTSDP 2K12HD047349-11 (E.W.T.)
Director’s Transformative Research R01-EB020539 (S.K.J.)
New Innovator Award DP2-OD006492 (S.K.J.)

Johns Hopkins Anesthesiology and Critical Care
Medicine