RNA Interference Screen Identified Farnesoid X Receptor (FXR) as a Host Dependency Factor for HBV Establishment in Primary Human Hepatocytes

Sumantra Ghosh, Rudolf K. Beran, Hassan Javanbakht, William E. Delaney IV, Simon P. Fletcher and Stephane Daffis

Gilead Sciences, Foster City, CA, USA

HEP DART 2017
3 December 2017 - 7 December 2017
Kona, Hawaii
I am an employee at Gilead Sciences Inc., USA
Need to find new target for HBV cure

A variety of host proteins have been reported as restriction or dependency factors for hepatitis B virus (HBV)

Majority of these factors were identified in transformed cell lines

We performed a focused siRNA screen in primary human hepatocytes (PHH) to evaluate the role of these factors in the HBV replication cycle
Study Design and Hit Selection Criteria

- Evaluated host factors (n=73) previously identified as restriction or dependency factors for HBV (n= 60) or other viruses (e.g. HIV, HCV)
- n=2 PHH donors; n=3 siRNA/protein; controls: siCtrl, siNTCP and siHBV
- Hit selection criteria:
 - ≥25% change in HBV DNA, HBsAg or HBeAg and ≥80% cell viability
 - Activity observed for ≥2 siRNA
Farnesoid X Receptor (FXR) Identified as Host Dependency Factor for HBV Replication in PHH

PHH Donor 1

- HBsAg: 7
- HBeAg: 1
- FXR: 0
- HBV DNA: 1

PHH Donor 2

- HBsAg: 6
- HBeAg: 3
- FXR: 1
- HBV DNA: 1

[Diagram showing the relationship between HBsAg, HBeAg, FXR, and HBV DNA for PHH Donor 1 and PHH Donor 2]
FXR is a Transcriptional Regulator of Hepatic Bile Acid, Glucose and Lipid Metabolism

- Transcription factor belonging to the nuclear receptor superfamily
- Highly expressed in liver, intestine and kidney\(^1\)
- Functions as a bile acid (BA) sensor and regulates genes involved in bile acid homeostasis in liver\(^1\)
- Also regulates hepatic glucose and lipid metabolism\(^1\)
- FXR null mice were shown to have elevated serum BA, cholesterol and triglycerides\(^2\)

Knockdown of FXR Inhibited HBV DNA and Antigens

Mean ± SD from n=2 independent PHH donors
FXR is Required for an Early Step in Replication Cycle

Mean ± SD from n=2 independent PHH donors
Knockdown of FXR Did Not Alter NTCP Expression

qRT-PCR

Western Blot

FXR
NTCP
GAPDH

% No siRNA

siCtrl
siFXR

None
siCtrl
siFXR
Summary

- Knockdown of the majority of genes (n=52, 71%) either did not impact HBV infection or substantially reduced cell viability
- Knockdown of 19 genes inhibited at least one viral endpoint
- Nuclear bile receptor FXR identified as a host dependency factor
 - Involved in early step(s) of HBV replication cycle
 - Knock-down did not substantially alter hepatocyte viability and differentiation status
 - Studies ongoing to elucidate the MOA by which FXR influences HBV
Acknowledgements

The authors gratefully acknowledge

Dhivya Ramakrishnan
Gary Lee
Congrong Niu
Hilario J Ramos