Looking Back to Move Forward - Designing Next Gen RNAi for HBV

HepDart
December 5, 2017
This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. These statements are based upon our current expectations and speak only as of the date hereof. Our actual results may differ materially and adversely from those expressed in any forward-looking statements as a result of various factors and uncertainties, including, without limitation, our developmental stage and limited operating history, our ability to successfully and timely develop products, enter into collaborations and achieve other projected milestones, rapid technological change in our markets, demand for our future products, legislative, regulatory and competitive developments and general economic conditions. Our Annual Report on Form 10-K, recent and forthcoming Quarterly Reports on Form 10-Q, recent Current Reports on Forms 8-K, and other SEC filings discuss some of the important risk factors that may affect our ability to achieve the anticipated results, as well as our business, results of operations and financial condition. Readers are cautioned not to place undue reliance on these forward-looking statements. Additionally, Arrowhead disclaims any intent to update these forward-looking statements to reflect subsequent developments.
All HBV transcripts, including pregenomic RNA, have common sequence and terminate with the same polyadenylation signal.

Single siRNA can reduce all HBV proteins

Ghany & Liang (2007), Gastroenterology **132**: 1574-1585
Differential HBsAg Reduction Observed in Chimpanzees with ARC-520

HBeAg+ (4 chimps)
HBeAg- (4 chimps)

HBsAg in serum (log10 reduction)

0.0
-0.4
-0.8
-1.2
-1.6
-2.0
-2.4

56 28 1 29 57 85 113 141 169

Day

HBeAg-
0.5 - 0.9 log_{10} reduction at nadir

HBeAg+
1.5 - 2.7 log_{10} reduction at nadir

HBeAg positive responded better than HBeAg negative chimps

Wooddell, Yuen et al, Sci Trans Med 2017
Differential Response Also Seen in Treatment Naïve Chronic HBV Patients

- Deep knockdown of HBsAg in HBeAg positive patients after a single dose

Wooddell, Yuen et al, Sci Trans Med 2017
HBV Transcripts in HBeAg+ vs. HBeAg- Chimps
PacBio Single Molecule Real-Time (SMRT) Sequencing

2.1kb S

HBeAg-
(88A010)

HBeAg-
(A2A004)

2.4kb S

DR2

DR1

HBV Poly(A) signal

S ORFs

ARC-520 siRNAs

HBeAg+

Most S transcripts terminate near HBV poly(A) signal as expected

HBeAg-

Majority of S transcripts are fused at the 3’ end to chimp sequence

Fusion points typically between DR2 and DR1. Expected if transcripts arose from integrated HBV dsDNA

S transcripts in HBeAg- chimps often lack target sites for ARC-520

Wooddell, Yuen et al, Sci Trans Med 2017
siRNA Designed to Target RNA Derived From HBV Integration Products in HBeAg- Chimps

- siHBV-i targets HBsAg RNA even if expressed from integrated HBV DNA
- siHBV-i gave deep reductions in HBsAg in HBeAg- chimps, similar to those observed using ARC-520 in HBeAg+ chimps
Learnings - Part 1

- If HBsAg is a key target - we need to account for both cccDNA and integrated-derived sources
Differential Response Also Seen in Treatment Naïve Chronic HBV Patients

- Deep knockdown of HBsAg in HBeAg positive patients after a single dose

Wooddell, Yuen et al, Sci Trans Med 2017
Case Study 1: HBeAg Positive Patient at 0.36 IU/ml

- **5.0 Log10 HBsAg reduction from baseline**
- **4.8 Log10 HBcrAg and >4.2 Log10 HBeAg reduction**
- **Rapid reduction of HBV DNA to BLOQ**
- **ALT elevation after initial antigen and DNA reductions and then after ARC-520 stopped**
- **Antigen decrease during ARC-520 treatment holiday consistent with increased host control of HBV virus**
Case Study 2: HBeAg Positive Patient Flared when ARC-520 Stopped

- **3.1 Log10 HBsAg reduction from baseline**
- **4.4 Log10 HBcrAg and 2.3 Log10 HBeAg reduction**
- Biphasic reduction of HBV DNA by >7.5 Log10 to BLOQ
- Initial ALT elevations coinciding with antigen and DNA reductions
- HBsAg and HBeAg did not return to baseline after single dose ARC-520
Case Study 3: HBeAg Negative Patient Now at 0.051 IU/ml

- **2.4 Log10 HBsAg reduction from baseline to 0.051 IU/mL**
- Delayed HBsAg response
- HBcAg BLOQ throughout the study
- Rapid reduction of HBV DNA to undetectable levels with ARC-520 plus entecavir
- Antigen decrease during treatment holiday consistent with increased host response to virus

Patient 01-7983
Case Study 4: HBeAg Negative Patient Trending Toward HBsAg Seroclearance

- **0.6 Log10 HBsAg reduction** from baseline to NADIR, with rebound followed by additional reduction off-therapy
- Current HBsAg is 2.6 IU/ml
- HBcrAg floating around LLOQ throughout study, except one spike post ARC-520.
- Rapid reduction of HBV DNA to undetectable levels with ARC-520 plus entecavir
Learnings – Part 2

• If HBsAg is a key target – we need to account for both cccDNA and integrated-derived sources

• At least in naïve patients, the host can respond productively as early as following the first dose of RNAi trigger and a Nuc

• Productive host responses can be subtle – for instance an increase in ALT from 10 to 20 IU/ml heralded HBeAg seroclearance and trend toward clearance of HBsAg in patient 1

• HBeAg negative patients with BLOQ DNA, HBcrAg and HBV RNA can still have quite significant circulating HBsAg (as high as ~1000 IU/ml in our patients

2 of 3 HBeAg+ and 2 of 5 HBeAg- patients achieved Sustained Host Response, even though ARC-520 was imperfect because it only silenced cccDNA expression
ARO-HBV: Key Design Elements for the Next Generation

The Wish List:

• Addresses full HBV transcriptome
 – Works for cccDNA and integrated-derived transcripts
• Subcutaneous dosing, monthly or less frequent
• No need for active endosomal escape agent
• Multiple triggers to avoid resistance development
• Powerful HBsAg reduction
• Expectation of wide therapeutic index
• Efficacy and safety in HBV patients
Growing libraries of targeting agents, linkers, stabilization chemistries, and PK enhancers enable modular approach... in a simple structure:

- Faster time to clinical candidates
- Multiple routes of administration
- Simplified manufacturing at reduced cost
- Wide safety margins
- Taking RNAi to the liver, lung, and other tissues
Importance of Integrated DNA as mRNA Source has Changed RNAi Strategy

- All HBV transcripts, including pregenomic RNA, overlap and terminate with the same polyadenylation signal

Single siRNA can reduce all mRNA from cccDNA but can miss integrated-derived mRNA

Ghany & Liang (2007), Gastroenterology 132: 1574-1585
Multiple Dosing in WTpHBV Mice Reduces HBV DNA by 3.44 log10, HBsAg and HBeAg to LOQ

HBsAg
- Saline
- 4 mg/kg ARO-HBV (Days 1, 22 and 43)

>3 log₁₀ reduction after 3 doses

HBeAg
- Saline
- 4 mg/kg ARO-HBV (Days 1, 22 and 43)

2.2 log₁₀ = 99.4% reduction to LLOQ

HBV DNA
- Saline
- 4 mg/kg ARO-HBV (Days 1, 22 and 43)

3.44 log₁₀ = >99.9% reduction
Integration Modeled in a New, Mutated pHBV Transfected Mouse

HBsAg knockdown is deep and prolonged despite loss of HBx-trigger site
Conclusions

- RNAi has a strong basis for staking a claim as a cornerstone therapy for the foreseeable future.

- Effective RNAi for HBV should take into account both cccDNA and integrated-derived RNA transcripts.

- Chronic dosing with ARC-520 and ETV in naïve patients showed promise of RNAi-induced host control despite design flaw.

- ARO-HBV has been designed based on learnings from ARC-520 and ARC-521 programs.

- Monthly subcutaneous dosing appears to be feasible based on pHBV mouse data.

- Clinical Studies are planned to begin 1H 2018.
Acknowledgments

• The University of Hong Kong
 – MF Yuen
 – Frank YF Lam
 – Michael KL Ko
 – Loey LY Mak
 – Elvis WP To
 – Wai-Kay Seto
 – Danny Ka-Ho Wong
 – Ringo Chi-Hang Wu
 – John Chi-Hang Yuen
 – Charles Tze-Kin Cheng

• The Chinese University of Hong Kong
 – Henry Chan
 – Vincent WS Wong
 – Grace LH Wong

• Victorian Infectious Diseases Reference Laboratory
 – Stephan Locarnini
 – Kathy Jackson
 – Renae Walsh
 – Margaret Littlejohn

• Texas Biomedical Research Institute
 – Robert Lanford
 – Deborah Chavez
 – Kathleen Brasky
 – Bemadette Guerra

• University of Louisiana at Lafayette
 – Jason Goetzmann
 – Dana Hasselschwert

• Arrowhead Pharmaceuticals
 – Christine Wooddell
 – Dave Lewis
 – Zhao Xu
 – Thomas Schluep
 – James Hamilton
 – Steve Kanner
 – Diamond Martin
 – Caroline LaPlaca Davis

• Clinical Advisory Board
 – Robert Gish
 – Stephan Locamini
 – CL Lai
 – Carlo Ferrari
 – Johnson Lau