In vivo evaluation of anti-HBV CRISPR/Cas9 therapy in the FRG mouse

Keith R. Jerome, MD PhD
Fred Hutchinson Cancer Research Center
University of Washington

December 5, 2017
Gene editing as an approach to cure HBV

- Approved antiviral drugs only inhibit replication
- cccDNA persists in hepatocyte nucleus throughout its life time
- cccDNA elimination or inactivation could prevent HBV persistence
Gene editing ≠ Cas9

Zinc finger nuclease
- 2 ORFs
- ~1.6 kb coding sequence
- Leaves 5’ overhangs
- Relatively simple retargeting
- Moderately high specificity
- Moderately difficult vectorization/delivery

TAL effector nuclease
- 2 ORFs
- ~2.7 kb coding sequence
- Leaves 5’ overhangs
- Very simple retargeting
- High specificity
- Difficult vectorization/delivery

Homing endonuclease
- 1 ORF
- ~0.8 kb coding sequence
- Leaves 3’ overhangs
- More difficult retargeting
- High specificity
- Easiest vectorization/delivery

CRISPR/Cas
- 1 ORF + guide RNA
- >3.3 kb coding sequence
- Leaves blunt ends
- Trivial retargeting
- Specificity controversial
- Difficult vectorization

modified from Schiffer et al, J Virol 2012
Gene editing as a genetic therapy

If cleavage and mutation were to occur within the coding sequence for an essential viral protein, viral production and pathogenesis would be prevented.
Potential Viral Targets for Gene Editing

<table>
<thead>
<tr>
<th></th>
<th>HIV</th>
<th>HBV</th>
<th>HSV</th>
<th>HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Disease severity</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Genetic variability</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Ease of delivery</td>
<td>---</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Need for complete eradication</td>
<td>---</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
HBV-specific ZFNs inhibit HBV replication

scAAV-LK03 transduces human hepatocytes in FRG mice

scAAV-LK03-smCBA-eGFP
14 days post intravenous delivery
HBV replication in the FRG mouse
(Genotype C)

HBV Genome Copies (Log 10/mL)

- Vehicle
- Entecavir
- Compound A
- Compound B

Day 3 (predose) Day 30 Day 37 Day 44 Day 51 Day 58 Day 66 Day 73 Day 80 Day 87
S. aureus CRISPR/Cas9 for HBV

- S. pyogenes Cas9 has shown good activity against HBV in vitro
- spCas9 is too large to be effectively used with AAV vectors
- S. aureus Cas9 is smaller and can be readily used with AAV vectors
HBV genotype C saCas9 sgRNA test

Reporter constructs (4 total)

MND → eGFP → SV40pA

Target 1-Target 2-Target 3

Untreated

Reporter

GFP6-20

GFP7-20

GFP+ve cells (% of untreated)

NTC GFP-6-20 GFP-7-20 C7 C14 C16

All Mid-Hi Hi
Timeline for HBV-C+ FRG mice

IV AAV delivery
5 x 10^{11} vg/mouse

Entecavir

No Entecavir

Weeks

0 4 8

Anti-GFP

Anti-HBV

* scheduled sacrifice
** found dead (No terminal blood sample)
*** sacrificed due to health (Terminal blood sample)
sacrificed early as part of group B1
In vivo tolerability of anti-HBV gene editing

No weight loss that differed from animals receiving control anti-GFP therapy

No morbidity or behavioral findings that differed from control animals

No histopathologic changes attributable to AAV/Cas9 therapy

Study Day versus Body Weight (Weekly)
in vivo gene editing of HBV

<table>
<thead>
<tr>
<th>Liver samples</th>
<th>Mouse ID#</th>
<th>anti_GFP or anti-HBV</th>
<th>Liver collection day</th>
<th>C14 Mutation</th>
<th>C7 mutation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M001</td>
<td>GFP</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1M002</td>
<td>GFP</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2M001</td>
<td>HBV</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2M002</td>
<td>HBV</td>
<td>11</td>
<td>0</td>
<td>0.02116178</td>
<td>0</td>
</tr>
<tr>
<td>3M001</td>
<td>GFP</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3M002</td>
<td>GFP</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3M003</td>
<td>GFP</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3M004</td>
<td>GFP</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3M005</td>
<td>GFP</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4M001</td>
<td>HBV</td>
<td>62</td>
<td>0.20064205</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4M002</td>
<td>HBV</td>
<td>62</td>
<td>0.08067769</td>
<td>0.02912339</td>
<td>0</td>
</tr>
<tr>
<td>4M003</td>
<td>HBV</td>
<td>62</td>
<td>0.37336652</td>
<td>0.01732952</td>
<td>0</td>
</tr>
<tr>
<td>4M004</td>
<td>HBV</td>
<td>45</td>
<td>0</td>
<td>0.01936671</td>
<td>0</td>
</tr>
<tr>
<td>4M005</td>
<td>HBV</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4M006</td>
<td>HBV</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Viral loads during CRISPR/Cas9 treatment

AAV day 0

HBV IU/ml

10^10
10^9
10^8
10^7
10^6
10^5
10^4
10^3
10^2

-24 -17 -10 -3 7 14 21 28 35 42 49 -10 -17 14 56

10^3
10^4
10^5
10^6
10^7
10^8
10^9
10^10

SLU qPCR

UW qPCR

1M001*
1M002*
2M001*
2M002*
3M001
3M002
3M003*
3M004*
4M001
4M002
4M003
4M004*
4M005*
4M006

Anti-GFP

Anti-HBV

Premature death

Planned sacrifice day 28

Entecavir

Days
Viral loads during CRISPR/Cas9 treatment

AAV day 0

HBV IU/ml

SLU qPCR

UW qPCR

Anti-GFP

Anti-HBV

Entecavir
Conclusions from initial in vivo trial

• in vivo therapy with AAV/Cas9 is well tolerated
• Gene editing of HBV in liver can be achieved
• No gene-edited HBV was observed in plasma, consistent with loss of replicative capacity
• Low-level gene editing does not result in decreased plasma viremia

Next steps

• What was the cause of low editing frequency?
 • poor viral suppression with entecavir
 • Is Cas9 the optimal enzyme?
 • confirmation of efficient hepatocyte transduction and Cas9 expression
• quantitation of gene editing in rcDNA vs. cccDNA
Acknowledgments

Daniel Stone
Martine Aubert

Tom Andrus
Chung Dang

Harshana De Silva Feelixge
Meei-Li Huang
Shiu Liang
Michelle Loprieno

Nixon Niyonzima
Harlan Pietz
Ruth Hall Sedlak
Larry Stensland
Nick Weber
Mary Lamery

Alexander Astrakhan
Paula Cannon
Jordan Jarjour
Hans-Peter Kiem
David Rawlings
Pavitra Roychoudhury
Andrew Scharenberg
Joshua Schiffer
Barry Stoddard

7th Wave Labs
Yecuris
Cellectis
Pregenen/Bluebird
Sangamo

UW Medicine
LABORATORY MEDICINE
VIROLOGY

defeatHIV

NATIONAL INSTITUTES
OF HEALTH

FRED HUTCH
cURES START HERE™

BILL & MELINDA GATES foundation

amfAR™
AIDS RESEARCH

CFAR
CENTER FOR AIDS RESEARCH
UNIVERSITY OF WASHINGTON

Caladan Foundation

Fred Hutchinson Cancer Research Center
Seattle, WA

Northwest Genome Engineering Consortium