Consensus AASLD-EASL HBV Treatment Endpoint and HBV Cure Definition

Anna S. Lok, MD, DSc
Alice Lohrman Andrews Professor in Hepatology
Director of Clinical Hepatology
Assistant Dean for Clinical Research
University of Michigan, Ann Arbor, MI, USA
Why is there a cure for hepatitis C but not for hepatitis B?
Efficacy and Limitations of Current HBV Treatment

Efficacy
- Potent virus suppression
- Reverses hepatic inflammation and fibrosis
- Prevents progression to cirrhosis and liver failure
- Decreases risk of HCC
- Excellent safety profile for NAs

Limitations
- Does not eradicate cccDNA or integrated HBV DNA
- Low rate of HBsAg loss
- Long duration of treatment required
- Risk of HCC persists albeit at lower rate

NA = nucleos/tide analogue, HCC = hepatocellular carcinoma
Barriers to Eradicating HBV

- Covalently closed circular (ccc) DNA
 - Long t1/2
 - Not affected by NAs
 - Partially impacted by IFN
 - Replenished from cytoplasmic core
- Integrated HBV DNA
- Impaired immune response
- Existing therapies act only on a few steps in HBV lifecycle

NA = nucleos(t)ide analogue, IFN = interferon
Can treatment accomplish what nature can’t?
HBV persists in persons who have recovered from acute hepatitis B with HBsAg to anti-HBs seroconversion
• Reactivation of HBV replication can occur during potent immunosuppressive therapy
• Transmission of HBV is possible when these livers are transplanted
• Long-lasting rigorous immune response to HBV possibly from continued stimulation by residual virus
AASLD/EASL HBV Treatment Endpoints Workshop
In collaboration with FDA and EMA
From Discovery to Regulatory Approval

September 8-9, 2016
Alexandria, VA

Program Chairs
Anna S. Lok, MD, FAASLD
Marc G. Ghany, MD, FAASLD
Fabien Zoulim, MD
Geoffrey M. Dusheiko, MD
How should a virologic cure for HBV be defined in clinical trials? (choose one)

<table>
<thead>
<tr>
<th>Type of Cure</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete cure with outcome similar to persons never exposed to HBV</td>
<td>5 (7.6)</td>
</tr>
<tr>
<td>Functional cure with outcomes similar to persons with chronic HBV infection with spontaneous or antiviral induced clearance of HBsAg</td>
<td>58 (87.9%)</td>
</tr>
<tr>
<td>Partial cure with outcomes similar to persons with inactive chronic HBV</td>
<td>4 (4.5%)</td>
</tr>
</tbody>
</table>
What criteria do you believe should be used for defining functional cure? (choose all that apply)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum HBV DNA undetectable</td>
<td>62 (93.9)</td>
</tr>
<tr>
<td>HBsAg negative</td>
<td>62 (93.9)</td>
</tr>
<tr>
<td>HBeAg negative</td>
<td>54 (81.8)</td>
</tr>
<tr>
<td>Anti-HBs positive</td>
<td>37 (56.1)</td>
</tr>
<tr>
<td>Anti-HBe positive</td>
<td>34 (51.5)</td>
</tr>
<tr>
<td>cccDNA transcriptionally inactive</td>
<td>31 (47.0)</td>
</tr>
<tr>
<td>cccDNA eliminated</td>
<td>4 (6.1)</td>
</tr>
<tr>
<td>Integrated HBV DNA eliminated</td>
<td>2 (3.0)</td>
</tr>
</tbody>
</table>
Which should be the primary efficacy endpoints for phase 2/3 clinical trials of novel ANTIVIRAL therapies aimed at HBV virologic cure? (rank)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Phase 2 Rank</th>
<th>Phase 3 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum HBV DNA undetectable</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sustained decrease in HBsAg level by >1 log10 IU/mL off treatment</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>HBsAg negative</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Maintained decrease in HBsAg level by >1 log10 IU/mL on treatment</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Anti-HBs positive</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

When should endpoint be assessed
- Month 6 on Rx
- Month 6 off Rx
Which should be the primary efficacy endpoints for phase 2/3 clinical trials of novel IMMUNOMODULATORY therapies aimed at HBV virologic cure? (rank)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Phase 2 Rank</th>
<th>Phase 3 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum HBV DNA undetectable</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Restoration of T cell response to HBV antigens</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sustained decrease in HBsAg level by >1 log10 IU/mL off treatment</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Maintained decrease in HBsAg level by >1 log10 IU/mL on treatment</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>HBsAg negative</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Anti-HBs positive</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

When should endpoint be assessed: Month 6 off treatment
For each of the following prerequisites, do they need to be satisfied before a new therapy can be tested in combination with other therapies? (yes/no)

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>With existing therapies</th>
<th>With other novel therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiviral activity as monotherapy</td>
<td>32 (48.5%)</td>
<td>26 (39.4%)</td>
</tr>
<tr>
<td>Safety as monotherapy</td>
<td>55 (83.3%)</td>
<td>59 (89.4%)</td>
</tr>
<tr>
<td>Infrequent/insignificant drug-drug interactions</td>
<td>47 (71.2%)</td>
<td>53 (80.3%)</td>
</tr>
</tbody>
</table>
Definitions of HBV Cure

<table>
<thead>
<tr>
<th>Clinical scenario</th>
<th>Complete/Sterilizing cure</th>
<th>Idealistic functional cure</th>
<th>Realistic functional cure</th>
<th>Partial “cure”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical scenario</td>
<td>Never infected</td>
<td>Recovery after acute HBV</td>
<td>Chronic HBV with HBsAg loss</td>
<td>Inactive carrier off treatment</td>
</tr>
<tr>
<td>HBsAg</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive/negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Serum HBV DNA</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Low level or not detected</td>
</tr>
<tr>
<td>Hepatic cccDNA, transcription</td>
<td>Not detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected Low level</td>
</tr>
<tr>
<td>Integrated HBV DNA</td>
<td>Not detected</td>
<td>Detected?</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Liver disease</td>
<td>None</td>
<td>None</td>
<td>Inactive, fibrosis regress over time</td>
<td>Inactive</td>
</tr>
<tr>
<td>Risk of HCC</td>
<td>Not increased</td>
<td>Not increased</td>
<td>Declines with time</td>
<td>Risk lower vs. active hepatitis</td>
</tr>
</tbody>
</table>
Virologic Cure vs. Liver (Clinical) Cure

Partial Cure
- HBsAg+, HBV DNA UD
- cccDNA+, integrated HBV DNA+

Decreased necroinflammation
- Fibrosis persists
- HCC risk persists

Functional Cure
- HBsAg-, HBV DNA UD
- cccDNA+, integrated HBV DNA+

Regression of fibrosis
- HCC risk decreases

Sterilizing Cure
- HBsAg-, anti-HBs+, HBV DNA UD
- cccDNA & integrated HBV DNA eliminated

Restoration of liver to normal
- HCC risk eliminated

UD = undetectable
Reversal of Fibrosis and Cirrhosis
Tenofovir Phase III trial: biopsies at Year 0, 1 & 5

- 348/641 (54%) had liver biopsy at baseline and Year 5
- 71/96 (74%) with cirrhosis (Ishak Score ≥5) at baseline no longer had cirrhosis at Year 5

Marcellin, P, Lancet 2013; 381: 468
Risk of HCC remains after 5 years of Entecavir or Tenfovir therapy in Caucasian CHB patients

794 adult Caucasian CHB patients

HCC risk seems to be decreasing after first 5 years of ETV/TDF therapy especially in those with compensated cirrhosis at baseline. Older age (≥55 yrs) main risk factor associated with late HCC development

Papatheodoridas G, Hepatology 2017 (in press)
HBsAg Loss Decreases Subsequent Risk of HCC

REVEAL study 2964 HBsAg+, no cirrhosis

Hazard ratio for HCC after seroclearance during follow up
- HBeAg 0.63
- HBV DNA 0.24
- **HBsAg** 0.18
after adjustment for age, gender ALT

Among HBeAg- lifetime cumulative incidence of HCC for those with clearance of
- **Both HBV DNA and HBsAg** 4.0%
- HBV DNA only 6.6%
- Neither 14.2%

Liu J, Gut 2014; 63: 1648
Durability of HBsAg Loss in Patients Treated with NUC ± PEG-IFN

74 patients with HBsAg loss during NUC +/- PEG-IFN treatment

>95% durable if HBsAg loss confirmed ≥24 weeks apart, seroconversion to anti-HBs not important

Chan H, EASL 2017
Definition of HBV Cure

<table>
<thead>
<tr>
<th>Clinical scenario</th>
<th>Complete cure</th>
<th>Idealistic functional cure</th>
<th>Realistic functional cure</th>
<th>Partial “cure”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical scenario</td>
<td>Never infected</td>
<td>Recovery after acute HBV</td>
<td>Chronic HBV with HBsAg loss</td>
<td>Inactive carrier off treatment</td>
</tr>
<tr>
<td>HBsAg</td>
<td></td>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td></td>
<td></td>
<td>Positive/negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Serum HBV DNA</td>
<td></td>
<td></td>
<td>Not detected</td>
<td>Low level or not detected</td>
</tr>
<tr>
<td>Hepatic cccDNA, transcription</td>
<td></td>
<td></td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Integrated HBV DNA</td>
<td></td>
<td></td>
<td>Not active</td>
<td>Low level</td>
</tr>
<tr>
<td>Liver disease</td>
<td>None</td>
<td>None</td>
<td>Inactive, fibrosis regress over time</td>
<td>Inactive</td>
</tr>
<tr>
<td>Risk of HCC</td>
<td>Not increased</td>
<td>Not increased</td>
<td>Declines with time</td>
<td>Risk lower vs. active hepatitis</td>
</tr>
</tbody>
</table>

Functional virologic cure but residual liver damage and risk of HCC that decreases with time

Akin to HCV cirrhosis with SVR

Lok A, AASLD-EASL HBV Treatment Endpoint Workshop, Hepatology & J Hepatol 2017 (in press)
Virologic Efficacy Endpoints

- HBsAg-, HBV DNA not detected
 - Are current assays for HBsAg sufficiently sensitive?
 - How to detect residual HBsAg in immune complex with anti-HBs?
 - Is seroconversion to anti-HBs required?
 - Can kinetics of HBsAg decline predict HBsAg clearance?
 - How to differentiate HBsAg translated from cccDNA vs integrated HBV DNA?

- Timing of assessment
 - On treatment response for phase 2 and off treatment response for phase 3 trials
 - Timing of assessment may depend on mechanism of action of drug
 - Longer follow-up post-treatment needed to confirm durability of response and impact on clinical outcomes
Liver (Clinical) Efficacy Endpoints

• Symptoms, patient reported outcomes
 – Many patients do not have symptoms until advanced disease

• Biochemical: ALT normalization
 – Need standardized definition of upper limit of normal
 – Failure to normalize ALT maybe due to other causes, notably fatty liver

• Histology: decrease necroinflammation, reverse fibrosis
 – Paired biopsies costly, risky, impractical and unnecessary
 – May be required in proof-of-concept studies to confirm a novel mode of action and/or to validate noninvasive surrogate markers of antiviral activity, e.g. to demonstrate decrease in cccDNA
 – Non-invasive assessment of liver fibrosis, elastography measures inflammation & fibrosis, treatment decreases inflammation before fibrosis

• Clinical outcomes: decrease cirrhosis, liver failure, HCC, death
 – Longer follow-up needed, also to confirm durability of response
Standardized Assays for New Markers to Determine Therapeutic Efficacy

• To provide mechanistic insights into effects of novel antiviral or immune modulatory agents and to have surrogate markers to assess cure

• Virologic assays
 – Serum
 • HBsAg (ultrasensitive, epitope mapping, immune complex)
 • HBV RNA – circulating pgRNA, more direct measure of cccDNA?
 • HBcrAg (core related antigen)
 – Liver: cccDNA quantification and transcriptional activity

• Immunologic assays
 – T and B cell response, innate immunity
 – Which epitope/peptide, pangenotype?
 – Cutoffs for meaningful response
Assessment of Safety and Stopping Rules

• Remarkable safety profile of current NAs imposes a stringent requirement for safety of new HBV therapies

• Unique concern for HBV drug development is risk of hepatitis flares
 – Transient flares not always harmful, may reflect immune clearance of infected hepatocytes
 – Severe flares with increase bilirubin or prothrombin time can result in liver failure and death, particularly in cirrhotics

• Any death, liver transplantation, hepatic decompensation or irreversible autoimmunity, or incidence of severe hepatitis flare in >5% of patients could prompt a halt
Collaborations Needed to Overcome Obstacles to HBV Cure