PREVALENCE OF RESISTANCE MUTATIONS TO INTEGRASE INHIBITORS IN INI-NAÏVE AND INI-EXPERIENCED HIV-1 INFECTED PATIENTS IN A LARGE ITALIAN COHORT

BARBARA ROSSETTI, MD
UNIVERSITY INFECTIOUS DISEASES UNIT, AZIENDA OSPEDALIERA UNIVERSITARIA SENESE, SIENA
INSTITUTE OF CLINICAL INFECTIOUS DISEASES, CATHOLIC UNIVERSITY OF SACRED HEART, ROMA
Disclosure

I have read and understood ICMJE policy on declaration of interests and declare I have received funds for attending symposia, consultancy membership from AbbVie, Janssen-Cilag, Gilead, MSD and Viiv Healthcare.
INI-containing regimens

✓ Good safety and efficacy
✓ RAL, EVG: lower genetic barrier than DTG
✓ Extensive (elvitegravir) or partial (dolutegravir) cross-resistance following raltegravir failure
✓ Evidence that frequency of mutations at raltegravir failure influenced by viral load [Armenia 2015] and viral subtype: non-B lower frequency of Q148H/R/K+G140S/A [Doyle 2015]
Objectives

✔ To analyze the prevalence of at least a low-level genotypic resistance to raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG) in ART naïve patients and in INI-experienced patients

✔ To identify determinants of INI resistance
Methods

- IN genotyped ART naïve and INI-experienced patients from the ARCA database (2007-2014)
- At least a low-level resistance (>LLR) to RAL, EVG or DTG predicted by Stanford 7.0 algorithm
- Decreased susceptibility to DTG also defined as detection of Q148H/K/R + ≥1 of G140S/A or E138K
- Viral subtype by Rega 2.0; unresolved classifications were decided by the first BLAST match upon a LANL HIV-1 subtype reference set
- Differences in the prevalence of resistance were assessed by χ-square test
Characteristics of population (n=1,385)

<table>
<thead>
<tr>
<th>ART-naïve patients (n=297)</th>
<th>INI-experienced patients (n=1,088)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>36 (IQR 29-45)</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>238 (80)</td>
</tr>
<tr>
<td>Viral subtype, %</td>
<td>B 60; CRF31BC 10; CRF02AG 6; CRF28BF 4; other 20</td>
</tr>
<tr>
<td>Years since HIV diagnosis*</td>
<td>0.06 (0.03-1.2)</td>
</tr>
<tr>
<td>Calendar year of genotype*</td>
<td>2011 (2009-2012)</td>
</tr>
<tr>
<td>CD4 count (cell/μL)*</td>
<td>339 (132-490)</td>
</tr>
<tr>
<td>Nadir CD4 count (cell/μL)*</td>
<td>337 (131-489)</td>
</tr>
<tr>
<td>HIV-1 RNA (copies/mL) on 271 available</td>
<td>46,000 (11,000-180,000)</td>
</tr>
</tbody>
</table>

Values are expressed as n (%) except for the * median (IQR)
Frequency of INI resistance mutations (n=1,385)

- Q148H/K/R plus G140S/A or E138K (DTG resistance) detected in 0 ART-naïve patients and in 61 (5.6%) INI-experienced patients
- Any predicted resistance (≥LLR) to INI in 1 (0.3%) ART-naïve patient and in 196 (18%) INI-experienced patients: 17.5% RAL, 15.3% EVG, 7% DTG
- Resistance at RAL failure with any of Y143R/C/H (n=40), Q148H/R/K (n=76), N155H (n=88) was observed in 18%
Predicted resistance (≥LLR) to any INI according to viral subtype in INI-experienced patients.

Chi square p value = n.s.

Viral subtype B: 18.4% n/N: 143/776
Viral subtype non B: 17% n/N: 53/312
Predicted decreased susceptibility to DTG according to viral subtype in INI-experienced patients

- Q148HKR + ≥1 of G140S or E138K
 - Viral subtype B: 6.4%
 - Viral subtype non B: 6.7%
 - Chi square p value = n.s.

- Q148HKR + G140S
 - Viral subtype B: 6.3%
 - Viral subtype non B: 6.4%
 - Chi square p value = n.s.

n/N: 50/776, 21/312 for Q148HKR + ≥1 of G140S or E138K
n/N: 49/776, 20/312 for Q148HKR + G140S
Predicted resistance (≥LLR) to any INI according to HIV-RNA levels in INI-experienced patients

<table>
<thead>
<tr>
<th>Virus Load Range</th>
<th>Predicted Resistance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL <200 cps/mL</td>
<td>19%</td>
</tr>
<tr>
<td>VL 200-500 cps/mL</td>
<td>22%</td>
</tr>
<tr>
<td>VL 501-1,000 cps/mL</td>
<td>60%</td>
</tr>
<tr>
<td>VL 1,001-10,000 cps/mL</td>
<td>43%</td>
</tr>
<tr>
<td>VL 10,001-100,000 cps/mL</td>
<td>44%</td>
</tr>
<tr>
<td>VL >100,000 cps/mL</td>
<td>30%</td>
</tr>
</tbody>
</table>

n/N: 11/57 6/27 12/20 30/70 23/52 11/36
Primary raltegravir resistance mutations according to HIV-RNA levels in INI-experienced patients

<table>
<thead>
<tr>
<th>HIV-RNA Level (cps/mL)</th>
<th>Y143C/H/R</th>
<th>Q148H/K/R</th>
<th>N155H</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL < 200</td>
<td>4/57</td>
<td>2/27</td>
<td>5/57</td>
</tr>
<tr>
<td>VL 200 - 500</td>
<td>2/27</td>
<td>4/20</td>
<td>2/27</td>
</tr>
<tr>
<td>VL 501 - 1,000</td>
<td>2/20</td>
<td>14/70</td>
<td>6/20</td>
</tr>
<tr>
<td>VL 1,001 - 10,000</td>
<td>6/70</td>
<td>11/52</td>
<td>12/70</td>
</tr>
<tr>
<td>VL 10,001 - 100,000</td>
<td>5/52</td>
<td>5/36</td>
<td>8/52</td>
</tr>
<tr>
<td>VL > 100,000</td>
<td>6/36</td>
<td>2/36</td>
<td>2/36</td>
</tr>
</tbody>
</table>

% of patients with specific resistance mutations across different HIV-RNA levels.
Predicted decreased susceptibility to DTG according to HIV-RNA levels in INI-experienced patients

- VL <200 cps/mL: 0/57 (0%)
- VL 200-500 cps/mL: 2/27 (7%)
- VL 501-1,000 cps/mL: 3/20 (15%)
- VL 1,001-10,000 cps/mL: 10/70 (14%)
- VL 10,001-100,000 cps/mL: 11/52 (21%)
- VL >100,000 cps/mL: 5/36 (13%)
Conclusions

✓ Transmitted INI resistance uncommon in Italy
✓ Modest accumulation of resistance at RAL failure (82% without any mutation at codons 143, 148, 155)
✓ Limited predicted resistance to dolutegravir
✓ In this cohort, resistance to INI is independent from viral subtype but related to VL at failure
✓ Differences with previous studies: earlier failures? Different subtypes?
✓ Need of accurate VL monitoring in RAL treated individuals in order to detect early failure at low VL and avoid resistance accumulation
Acknowledgements

Dott.ssa Alessandra Vergori, University Infectious Diseases Clinic, AOU Senese, Siena
Dott.ssa Claudia Bianco, University Infectious Diseases Clinic, AOU Senese, Siena
and Clinic of Infectious Diseases, Catholic University of Sacred Heart, Roma
Prof.ssa Laura Monno, Infectious Diseases Clinic, Bari University Hospital, Bari
Dott.ssa Grazia Punzi, Unit of Microbiology and Virology, Bari University Hospital, Bari
Dott. Vanni Borghi, Infectious Diseases Clinic, Modena University Hospital, Modena
Dott.ssa Monica Pecorari, Unit of Microbiology and Virology, Modena University Hospital, Modena
Prof.ssa Daniela Francisci, Infectious Diseases Clinic, Perugia University Hospital, Perugia
Dott.ssa Lara Ines Bellazzi, Infectious Diseases Clinic, S. Matteo Hospital, Pavia
Dott.ssa Stefania Paolucci, Laboratory of Virology, S. Matteo Hospital, Pavia
Dott.ssa Bianca Bruzzone, Hygiene Unit, IRCCS AOU San Martino-IST, Genova
Dott.ssa Lucia Toscano, Infectious Diseases and Hepatology Clinic, AOU Senese, Siena
Dott. Francesco Saladini, Department of Medical Biotechnologies, University of Siena, Siena
Prof. Maurizio Zazzi, Department of Medical Biotechnologies, University of Siena, Siena
Prof. Andrea De Luca, University Infectious Diseases Clinic, Azienda Ospedaliera Universitaria Senese, Siena
Acknowledgements – ARCA

Thanks to:

- The patients sharing their data
- The clinical and laboratory units
- The Scientific Board
- The companies supporting the initiative