The microbial-derived short chain fatty acid butyrate differentially inhibits gut T helper cell subset proliferation.

Jon Kibbie
MD/PhD Candidate
University of Colorado Anschutz Medical Campus
Laboratory of Dr. Cara Wilson
Hallmarks of HIV-1 infection in the gut

- High concentration of activated T cells in the lamina propria (LP).

- Increased levels of HIV-1 infection and subsequent CD4 T cell depletion (Th17, Th22).

- HIV-1 associated dysbiosis of the mucosal microbiome.
 - Lower abundance of bacteria families that produce regulatory short chain fatty acids such as butyrate.
Butyrate and gut homeostasis

- Butyrate is one of the metabolic products of the digestion of dietary fiber by anaerobic bacteria.

- Butyrate concentrations:
 - lumen 20mM,
 - portal circulation 30µM
 - systemic circulation 4µM.

- Butyrate has been shown to have immune modulating effects on innate and adaptive immune cells and acts as a major nutrient source for colonocytes.
 - Lack of studies on human gut immune cells

- Various mechanisms
 - HDAC inhibitor (HDACi),
 - G-coupled Protein Receptor (GPR) signaling
 - PPARγ signaling (Alex 2013)
Butyrate and HIV-1 infection

- Total butyrate producing bacteria (BPB) species decreased in relative abundance in the colonic mucosa of chronically infected and untreated individuals.

- Levels of a representative BPB inversely associated with clinical markers of inflammation and microbial translocation.

- The addition of butyrate to in vitro HIV-infected lamina propria mononuclear cells exposed to enteric bacteria resulted in:
 - decreased CD4 and CD8 T cell activation
 - decreased HIV-1 infection levels
 - decreased production of IL-17 and IFNγ
Objective

To better understand the mechanisms by which butyrate impacts gut LP CD4 T helper cell activation, proliferation and HIV-1 infection levels.
Assay Design

ELISA:
- Secreted IL-17, IFNγ

Multi-color flow cytometry:
- CD4 T cell activation and proliferation
- Th17, Th22, Th1 proliferation
- Th17, Th22, Th1 infection

CFSE-labeled LPMC

- ±T cell activating beads
- ± butyrate

+/- HIV-1 (TF CH40)

4 days
Butyrate reduces LP CD4 T cell activation and proliferation in a dose dependent manner

- Similar responses with bacteria and in purified LP CD4 T cells.
- Significant toxicity at higher doses (>4mM).

Values: Mean, N=3
*P<0.05
Butyrate reduces LP CD4 T cell cytokine production in a dose dependent manner

Values: Mean, N=3
*P<0.05

• Similar responses in purified LP CD4 T cells.
Does butyrate differentially effect LP T helper cell subset proliferation and HIV-1 infection levels?
Th17 cells are more sensitive to the effect of butyrate

Identification of Th subsets

- **4 day culture**
- **4 hour mitogenic stimulation** (PMA/ionomycin)

Proliferation of Th subsets

IC50 Values
- Th17 = 0.147 mM
- Th1 = 0.229 mM
- Th22 = 0.258 mM

Values: Mean, N=6
*P<0.05
Lower doses of butyrate increase the frequency of HIV-1 infected T helper cells in the setting of activation.
Conclusions

• In the setting of lower concentrations of butyrate:
 – Decreased Th17 proliferation relative to other T helper subsets
 – Increased T helper subset HIV-1 infection, with Th17 productive infection levels peaking at lower concentrations of butyrate

• In the setting of higher concentrations of butyrate:
 – Decreased T helper cell proliferation
 – Decreased T helper subset HIV-1 infection levels
Clinical Importance and Future Directions

• Our *in vitro* modeling suggest that lower amounts of butyrate in the gut lumen may exacerbate infection and depletion of certain T helper subsets
 – increasing amounts of available butyrate may decrease total T helper cell activation, infection and depletion.

• Future Studies:
 – Mechanistic studies into HDACi, GPR and PPARγ signaling
 – Gene expression study on isolated T helper cell populations
Acknowledgements

Wilson Lab
Dr. Cara Wilson
Dr. Steph Dillon
Dr. Jay Liu
Dr. Moriah Castleman

UC Denver MSTP

Intestinal tissue samples:
Dr. Martin McCarter (Department of Surgery)

Microbiome species analysis (Clinical study):
Dr. Dan Frank (Division of Infectious Diseases)

Grant funding:
NIH R01 DK088663 (C.C. Wilson, P.I)
NIH R01 AI108404-01 (C.C Wilson, PI)
CCTSI TL1 TR001082 (J Kibbie)