RESISTANCE CHARACTERISTICS OF HIV INTEGRASE INHIBITORS

Roger Paredes, MD, PhD
Infectious Diseases & irsiCaixa AIDS Research Institute
Hospital Germans Trias i Pujol
Barcelona

HIV Clinical Fora Series Brazil: Integrase Inhibitors 2018
Integrase Inhibitors
Strand transfer

Trans-esterification reaction \rightarrow direct nucleophilic attack of the 3’ OH group on the phosphodiester backbone of the host target DNA \rightarrow covalent insertion of viral DNA into the cell DNA
Integrase

5 β-sheets + 6 α helices linked by flexible loops → allow conformational changes required for 3´ processing of the viral DNA and strand transfer

Two structural components are necessary for integrase binding:

- A **hydrophobic benzyl moiety** that buries into a highly hydrophobic pocket near the active site
- A **chelating triad that binds with two Mg$^{2+}$ ions** in a rather hydrophilic region

All potent integrase inhibitors possess a substituted benzyl component that is critical for maintaining 3‘end joining potency.

INSTIs: Mechanism of action

Mg\(^{2+}\) and Mn\(^{2+}\) are critical cofactors in the integration phase.

INSTIs bind to the active site of Mg\(^{2+}\) ions.

Functional impairment of integrase.
Stanford HIVdb

By Andrea Low, MD and Mark Muesing, PhD. Understanding and Inhibiting Integrase in the Treatment of HIV Disease Based on a presentation at PRN by Mark Muesing, PhD and Martin Markowitz, MD

Major Integrase Inhibitor (INI) Resistance Mutations

<table>
<thead>
<tr>
<th>Position</th>
<th>Cons.</th>
<th>A1K</th>
<th>Q</th>
<th>KAT</th>
<th>SAC</th>
<th>RCH</th>
<th>HRK</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAL</td>
<td>66</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>Y</td>
<td>S</td>
<td>Q</td>
<td>N</td>
</tr>
<tr>
<td>EVG</td>
<td>92</td>
<td>A1K</td>
<td>Q</td>
<td>KAT</td>
<td>SAC</td>
<td>RCH</td>
<td>HRK</td>
<td>H</td>
<td>K</td>
</tr>
<tr>
<td>DTG</td>
<td>138</td>
<td>K</td>
<td>Q</td>
<td>KAT</td>
<td>SAC</td>
<td>HRK</td>
<td>H</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Bold underline: High-level reduced susceptibility or virological response.

Bold: Low-level reduced susceptibility or reduced susceptibility or virological response.

Plain text: Reduced susceptibility in combination with other INI-resistance mutations.

Abbreviations: Dolutegravir (DTG), elvitegravir (EVG), raltegravir (RAL).

Additional mutations: H51Y, L74M, Q95K, T97A, S153YF, E157Q, G163RK, and S230R are relatively nonpolyorphic RAL and/or EVG-selected accessory resistance mutations. E92GV, F121Y, Y143KSGA, P145S, Q146P, and N155ST are rare nonpolyorphic IN mutations that reduce RAL and/or EVG susceptibility. G118R is a rare nonpolyorphic mutation associated with resistance to each of the INSTIs.

References: hivdb.stanford.edu/s/instinotes
Integrase Inhibitors

First generation

- Raltegravir (RAL)
- Elvitegravir (EVG)

Second generation

![Raltegravir](image1)

![Elvitegravir](image2)
RAL Resistance: Three Pathways

<table>
<thead>
<tr>
<th>N155H</th>
<th>Q148K/H/R</th>
<th>Y143C</th>
</tr>
</thead>
<tbody>
<tr>
<td>L74M</td>
<td>L74M</td>
<td>E92Q</td>
</tr>
<tr>
<td>E92Q</td>
<td>E92Q</td>
<td>T97A</td>
</tr>
<tr>
<td>T97A</td>
<td>T97A</td>
<td>V151I</td>
</tr>
<tr>
<td>V151I</td>
<td>E138A</td>
<td>G163R</td>
</tr>
<tr>
<td>G163R</td>
<td>E138K</td>
<td>S230R</td>
</tr>
<tr>
<td>G163K</td>
<td>G140A</td>
<td></td>
</tr>
<tr>
<td>S230R</td>
<td>G140S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G163R</td>
<td></td>
</tr>
</tbody>
</table>

Witmer et al, ICAAC 2008
Key Raltegravir Mutations
Emerging RAL-resistant mutants originate from pre-existing viruses

Codoñer et al, Antiv Res 2010; Armenia D et al., JID 2012
Genotype – Phenotype Correlations of RAL Mutations

Q148 Pathway

Fold-Change IC₅₀

- Q148H
- Q148H/G140S
- Q148K
- Q148K/E138A
- Q148K/G140A
- Q148K/E138A/G140A
- Q148R
- Q148R/G140S
Integrase Inhibitors

First generation

- Raltegravir (RAL)
- Elvitegravir (EVG)

Second generation
Integrase Inhibitors

First generation
- Raltegravir (RAL)
- Elvitegravir (EVG)

Second generation
- Dolutegravir (DTG)
- Bictarvy (BIC/FTC/TAF) – FDA approved Feb 2018
- Cabotegravir - Advanced development
DTG versus RAL alignment in active site
Optimizing the Scaffold Against a Key Mutant

<table>
<thead>
<tr>
<th>Series</th>
<th>Structure</th>
<th>IC$_{50}$ (nM) wt</th>
<th>Q148K Resistance (fold)</th>
<th>Protein Shift (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1.</td>
<td></td>
<td>3</td>
<td>48x</td>
<td>16.8x</td>
</tr>
<tr>
<td>B-2.</td>
<td></td>
<td>5</td>
<td>29x</td>
<td>3.1x</td>
</tr>
<tr>
<td>C-1.</td>
<td></td>
<td><2</td>
<td>3.8x</td>
<td>3.7x</td>
</tr>
<tr>
<td>D-1.</td>
<td></td>
<td>5</td>
<td>4.3x</td>
<td>7.9x</td>
</tr>
</tbody>
</table>
Bictegravir: Optimization of Structural A-and D-rings

Structure of Bictegravir

A-Ring

D-Ring

Lazerwith et al. ASM Microbe 2016; June 16-20, 2016; Boston, MA. Poster 414.
Bictegravir Characteristics After Optimizing Both the A & D-ring

<table>
<thead>
<tr>
<th></th>
<th>RAL</th>
<th>EVG</th>
<th>DTG</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC$_{50}$ (nM, MT4)</td>
<td>8.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Plasma Adjusted EC$_{50}$ (nM, MT4)</td>
<td>21</td>
<td>43</td>
<td>47</td>
<td>83</td>
</tr>
<tr>
<td>human liver microsomal Cl (L/h/kg)</td>
<td>0.24</td>
<td>0.43</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>%free human plasma</td>
<td>12.2</td>
<td>0.5</td>
<td>0.7</td>
<td>0.30</td>
</tr>
<tr>
<td>OCT-2 IC$_{50}$ (µM)</td>
<td></td>
<td>0.13</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>PXR %Emax@ 15 µM</td>
<td></td>
<td>51</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Solubility (pH = 7, µg/mL)</td>
<td>1906</td>
<td>2</td>
<td>53</td>
<td>119</td>
</tr>
<tr>
<td>G140S/Q148R fold shift</td>
<td>249</td>
<td>297</td>
<td>4.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Lazerwith et al. ASM Microbe 2016; June 16-20, 2016; Boston, MA. Poster 414.
Integrase Inhibitor Resistance to Mutations and Combinations

Adapted from White K et al, 14th Euro Workshop, May 2016, Rome
BIC vs. DTG: clinically meaningful?

BIC has Potent Activity Against INSTI-Resistant HIV-1 (n=47)

<table>
<thead>
<tr>
<th>INSTI</th>
<th>≤2.5</th>
<th>>2.5-≤10</th>
<th>>10-fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIC</td>
<td>70%</td>
<td>28%</td>
<td>2%</td>
</tr>
<tr>
<td>DTG</td>
<td>49%</td>
<td>34%</td>
<td>17%</td>
</tr>
<tr>
<td>EVG</td>
<td>6%</td>
<td>2%</td>
<td>92%</td>
</tr>
<tr>
<td>RAL</td>
<td>2%</td>
<td>8%</td>
<td>89%</td>
</tr>
</tbody>
</table>

a. Phenotype of INSTI against 47 patient-derived isolates with INSTI resistance in the PhenoSenseIN assay (Monogram Biosciences)

BIC resistance *ex vivo*

Two patterns of resistance substitutions in IN after extended culture with BIC

- **R263K ± M50I** (<3-fold reduced susceptibility)
- **S153F or S153Y** (≤2-fold reduced susceptibility)

Selected variants remained sensitive or had low-level reduced susceptibility to BIC

Selecting Drug | **Key IN Substitutions at Select Passages by Deep Sequencing (Frequency)a** | **IN Genotype of Representative SDM** | **EC_{50} Fold Change Compared to HIV-1 xLAI WT**
RC
| **BIC** | **DTG** | **EVG** | **RAL** | **Drug Concentration (nM)** | **Days in Culture**
| --- | --- | --- | --- | --- | --- | --- |
| BIC | None | T66I (8.0%)
S153F (2.4%) | T66I (3.1%)
S153F (38%)
E157K (3.4%) | S153F (97%)
E157K (3.2%)
S24G (32%) | S153F (>99%)
S24G (11%) | T66I
S153F
T66I/S153F
E157K
S153Y/L234F | 0.4
1.4
0.6
1.0
2.0
1.2
2.2
0.8
0.8
1.7
1.2
1.1
1.3
3.0
1.4
3.4
1.4
1.3
2.4
1.3
0.8
1.1
0.8
0.7
76%
52%
12%
16%
45%
120%
33% | 0.1
0.5
1
1.0
10
100
1000
10000
100000 | 0
50
100
150
200
250 | BIC (Final = P13, 207 days)
DTG (Final = P13, 229 days)
EVG (Final = P13, 138 days)
RAL (Final = P13, 166 days)

Andreatta, et al. CROI 2018
No DTG resistance after 1st-line DTG VF in RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Summary efficacy</th>
<th>PDVF in DTG arm</th>
<th>INSTI resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAMINGO</td>
<td>DTG > DRV/r</td>
<td>2 / 242</td>
<td>0</td>
</tr>
<tr>
<td>ARIA</td>
<td>DTG > ATV/r</td>
<td>1 / 248</td>
<td>0 (1 K219K/Q + E138E/G)</td>
</tr>
<tr>
<td>SINGLE</td>
<td>DTG > EFV</td>
<td>18 / 422</td>
<td>1 E157Q/P (no emergent INSTI DR)</td>
</tr>
<tr>
<td>SPRING-2</td>
<td>DTG = RAL</td>
<td>16 / 411</td>
<td>0</td>
</tr>
</tbody>
</table>

- DTG better than non-INSTIs, non-inferior to RAL
- No INSTI resistance emergence in ideal conditions
 - ART-naive
 - WT virus → Active backbone
 - Early ART switch after PDFV
Randomized, double-blind, multicenter, active-controlled, Phase 3 studies of treatment-naïve HIV-1 infected participants: GS-US-380-1489 (NCT02607930) and GS-US-380-1490 (NCT02607956)

Primary endpoint: proportion with HIV-1 RNA < 50 copies/mL at Week 48 by US FDA-defined Snapshot Algorithm²,³

Figure 2. Rapid Suppression of HIV-1 RNA to < 50 copies/mL through Week 48 (Missing = Excluded Approach)

B/F/TAF vs. DTG/ABC/3TC or vs. DTG + F/TAF: displayed rapid viral suppression and non-inferior efficacy at Week 48

AE=adverse event; DC=discontinuation; Other reasons= lost to follow-up, withdrew consent, investigator discretion, noncompliance, etc.)

White K, CROI, 2018, #532
Figure 4. Week 48 Virologic Outcome of B/F/TAF-treated Participants Stratified by Baseline Resistance Category

1º=Primary Resistance Substitution; 2º=Secondary Resistance Substitution

White K, CROI, 2018, #532
Table 7. Resistance Analysis Population through Week 48 and Resistance Summary

<table>
<thead>
<tr>
<th>Resistance Category</th>
<th>Number of Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B/F/TAF (N=634)</td>
</tr>
<tr>
<td>Resistance Analysis Population (RAP) (% of FAS)</td>
<td>8 (1.3%)</td>
</tr>
<tr>
<td>Subjects with Data for Any Gene (% of RAP)</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>Subjects with RT Data</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>Subjects with IN Data</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>Developed Resistance Substitutions to Study Drugs</td>
<td>0</td>
</tr>
</tbody>
</table>

PI = protease inhibitor; PR = protease; R = resistance
Slow resistance development and transmission in resource-rich settings

SAILING: Subjects 4 & 3

<table>
<thead>
<tr>
<th>HIV-1 RNA</th>
<th>Day 1</th>
<th>PDVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A49G, S230R, R263K</td>
<td>0.73</td>
<td>3.82</td>
</tr>
<tr>
<td>DTG FC</td>
<td>0.54</td>
<td>2.39</td>
</tr>
<tr>
<td>RAL FC</td>
<td>NR</td>
<td>7.1%</td>
</tr>
<tr>
<td>IN RC*</td>
<td>20%</td>
<td>7.1%</td>
</tr>
</tbody>
</table>

PDVF BR: No emergent resistance, and no NRTI resistance at any time points

Underwood, et al. Abs#85. IDRW June 4-8, 2013. Toronto, Canada
DTG monotherapy

10 years on NNRTI 3-drug ART

Blanco JL, et al EACS 2017
Viral dynamics during DTG monotherapy maintenance failure

Slide Courtesy of Charles Boucher, Erasmus University
Conclusions

• INSTIs are the current mainstay of ART
• Genetic barrier
 • RAL, ELV: Low
 • DTG, BIC: Higher *(but not as high as boosted PIs)*
 • Failure to DTG monotherapy with “RAL-like” resistance profiles

• Currently no need for pre-ART genotyping for clinical management
• Surveillance is warranted

• **NEVER** monotherapy
Gràcies!

FLSida: Isabel Bravo, Pep Coll, Carla Estany, Cristina Herrero
BCN Checkpoint: Jorge Saz
IrsiCaixa: Bea Mothe, Jorge Camillo, Christian Brander, Julià Blanco, Bonaventura Clotet
Vall d’Hebron: Manel Crespo, Jordi Navarro, Ariadna Torrelo
UVIC-UCC: Malu Calle

Jonathan Shapiro, Slides

Este estudio está apoyado por la University and Research Secretary - Department of Economy and Knowledge of the Government of Catalonia and the European Social Fund (Ref. 2015 FI_B_00184) and the Fondo de Investigaciones Sanitarias (PI13/02514) & Fondos FEDER & the RED de SIDA RD16/0025/0041