Population Pharmacokinetics of Levofloxacin in Children Treated for, or Exposed to, Multidrug-Resistant Tuberculosis

Presenter: Charles A. Peloquin, Pharm.D.
Authors: Daniel Gonzalez (1,2,3), Sundari Mase (4), John Jereb (4), Fatma Martin (5), Charles Daley (6), Dorina Fred (7), Kennar Briand (8), Ann Loeffler (9), Terence Chorba (4), Charles Peloquin (1)

Institutions: (1) University of Florida, Gainesville, FL, USA; (2) University of North Carolina, Chapel Hill, NC, USA; (3) Duke Clinical Research Institute, Durham, NC, USA; (4) Centers for Disease Control and Prevention, Atlanta, GA, USA; (5) North Bay Pediatrics, Vallejo, CA, USA; (6) National Jewish Health, Denver, CO, USA; (7) TB/Leprosy Program, Federated States of Micronesia; (8) TB/Leprosy Program, Republic of Marshall Islands; (9) Francis J. Curry National TB Center, San Francisco, CA, USA
Levofloxacin

- Synthetic broad-spectrum fluoroquinolone, active vs. TB
- Currently second-line therapy for active TB disease
- In children, use limited to serious infections (e.g., anthrax) or drug resistant pathogens (due to concerns about cartilage damage in some juvenile animal models)

Pharmacokinetics

- Absorption: rapid and complete; Bioavailability ~ 99%
- Distribution: 74-112 L; Protein binding: 24-38%
- Metabolism: minimal
- Elimination: largely excreted unchanged in urine (~ 80%)

Methods

Dataset

- 50 children (1-15 years) treated for or exposed to multi-drug resistant tuberculosis
 - Federated States of Micronesia (FSM, island of Chuuk) and
 - Republic of Marshall Islands (RMI, city of Majuro)
- Plasma samples were taken after ≥ 6 weeks of DOT
- Dose varied between 5-20 mg/kg/day
- Plasma samples were taken at 1, 2, and 6 hours post-dose, and for subjects in the Republic of Marshall Islands, a 0 hour time point collected too
Methods

- Software
 - Noncompartmental analysis performed in WinNonlin
 - Population PK analysis performed in NONMEM 7.2 (FOCE w/ interaction, SAEM)
 - NONMEM execution and run management in Pirana
 - Prediction corrected visual predictive checks (pcVPC) and bootstrapping using Perl-speaks-NONMEM (PsN)
 - Covariates tested using GAM in Xpose R package
Methods

- Population analyses
 - One- and two-compartment body model tested
 - Model development guided by GOF plots, VPCs, plausibility of parameter estimates, and shrinkage and objective function values
 - For nested models, a p-value of 0.05 was used
 - Inter-individual variability was estimated for all parameters using an exponential variance model
 - The final population PK model was used to perform exposure simulations and evaluate target attainment
Methods

A fixed exponent allometric model was applied

\[
\frac{CL}{F} = CL_{std} \times \left(\frac{WT_i}{70 \text{kg}} \right)^{0.75}
\]

\[
\frac{V}{F} = V_{std} \times \left(\frac{WT_i}{70 \text{kg}} \right)^{1}
\]
PK Plots

Chuuk, FSM

Majuro, RMI
Noncompartmental Analysis

<table>
<thead>
<tr>
<th>AGE (years)</th>
<th>N</th>
<th>Lambda_\text{z} (hours(^{-1}))</th>
<th>V/F (liters/kg)</th>
<th>CL/F (liters/hour/kg)</th>
<th>Half-life (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 to 2</td>
<td>3</td>
<td>0.39 (0.31)</td>
<td>0.74 (0.46)</td>
<td>0.26 (0.15)</td>
<td>2.46 (1.38)</td>
</tr>
<tr>
<td>2 to 5</td>
<td>7</td>
<td>0.19 (0.05)</td>
<td>1.24 (0.43)</td>
<td>0.24 (0.11)</td>
<td>3.83 (1.12)</td>
</tr>
<tr>
<td>5 to 10</td>
<td>18</td>
<td>0.18 (0.07)</td>
<td>1.49 (0.73)</td>
<td>0.23 (0.07)</td>
<td>4.89 (3.08)</td>
</tr>
<tr>
<td>10 to 12</td>
<td>5</td>
<td>0.18 (0.05)</td>
<td>1.36 (0.30)</td>
<td>0.25 (0.12)</td>
<td>4.03 (0.89)</td>
</tr>
<tr>
<td>12 to 17</td>
<td>17</td>
<td>0.14 (0.05)</td>
<td>1.38 (0.44)</td>
<td>0.18 (0.06)</td>
<td>5.45 (1.69)</td>
</tr>
</tbody>
</table>
Noncompartmental Analysis

<table>
<thead>
<tr>
<th>AGE (years)</th>
<th>N</th>
<th>C<sub>MAX</sub> (µg/ml)</th>
<th>T<sub>MAX</sub> (hours)</th>
<th>AUC<sub>0-6</sub> (hours*µg/ml)</th>
<th>AUC<sub>0-24</sub> (hours*µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 to 2</td>
<td>3</td>
<td>13.54 (3.58)</td>
<td>1.00 (0.00)</td>
<td>52.47 (23.18)</td>
<td>70.09 (42.66)</td>
</tr>
<tr>
<td>2 to 5</td>
<td>7</td>
<td>10.58 (3.62)</td>
<td>1.14 (0.38)</td>
<td>44.79 (15.20)</td>
<td>70.11 (29.56)</td>
</tr>
<tr>
<td>5 to 10</td>
<td>18</td>
<td>6.77 (2.69)</td>
<td>1.44 (0.51)</td>
<td>28.18 (10.22)</td>
<td>47.30 (23.53)</td>
</tr>
<tr>
<td>10 to 12</td>
<td>5</td>
<td>6.95 (1.97)</td>
<td>1.20 (0.45)</td>
<td>29.37 (9.25)</td>
<td>47.82 (19.23)</td>
</tr>
<tr>
<td>12 to 17</td>
<td>17</td>
<td>7.41 (2.17)</td>
<td>1.35 (0.49)</td>
<td>32.17 (10.90)</td>
<td>60.66 (25.09)</td>
</tr>
<tr>
<td>Structural Model</td>
<td>PARAMETER ESTIMATE</td>
<td>RSE (%)</td>
<td>BOOTSTRAP ESTIMATE (95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_A (HOUR$^{-1}$)</td>
<td>2.69</td>
<td>22</td>
<td>2.77 (1.89 - 5.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL/F (L/H)</td>
<td>11.61</td>
<td>5</td>
<td>11.61 (10.34 - 12.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/F (L)</td>
<td>88.39</td>
<td>4</td>
<td>87.86 (80.80 - 95.26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-individual Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω (K_A)</td>
</tr>
<tr>
<td>ω (CL/F)</td>
</tr>
<tr>
<td>ω (V/F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPORTIONAL (%)</td>
</tr>
<tr>
<td>ADDITIVE (μg/ml)</td>
</tr>
</tbody>
</table>
Goodness of Fit Plots

Population Prediction

Individual Prediction
Conditional Weighted Residuals
Visual Predictive Check
Exposure Simulations

Comparisons to adult fAUC 24

- Adult, 1000 mg
- Adult, 750 mg
- Adult, 500 mg

X axis: Pediatric doses

Dosage (mg/kg)

Simulated Steady-State fAUC (0)
Target Attainment Analysis

4 possible exposure targets:

4 possible doses:

4 possible MICs:

4 possible exposure targets:

4 possible doses:

4 possible MICs:
Conclusions

- Levofloxacin may be an effective treatment option for children with MDR-TB or presumed MDR LTBI.

- A population model was created that effectively captured the available data.

- V/F and Cl/F were well described by the model. Estimates of ka were more variable, reflecting in part very limited sampling during the absorption phase.

- Further clinical research is needed to evaluate appropriate targets for PK/PD indices that can be used to optimize drug dosing.

- LEVO doses up to 20 mg / kg may be needed.