Sudden viral load increase as an indicator of HIV-1 superinfection in HAART-naive HIV-infected patients

T Doyle
UCL Medical School and UCL Partners, Royal Free Hospital, London.
Background

- HIV-1 superinfection, defined as infection with a second strain of HIV-1 at least one month after a primary infection and following documented seroconversion.
- Increasingly recognised since the first reports of its occurrence in humans in 2002\(^1\).
- Drives HIV genetic diversification through recombination.
- It reveals ongoing transmission risk, and may result in accelerated disease progression and acquisition of drug resistant strains\(^2\).
- Occurs in both early and established infection.
- The true incidence is the subject of much debate.
- Studies investigating its incidence in men who have sex with men (MSM) are limited.

Aim

- To determine the frequency of occurrence of superinfection events among HAART-naïve MSM who showed a sudden increase in plasma viral load during routine clinical monitoring.
Methods

- The clinic database was screened for eligible patients.
- HAART-naïve MSM who showed a viral load increase of $\geq 0.5 \log_{10} \text{cps/ml}$ relative to two previous stable consecutive measurements.
- For the initial screening, *Pol* gene sequences (RT aa 1-335; PR aa 1-99) were obtained from plasma RNA collected before (=baseline) and after (=follow-up) the viral load increase by population sequencing*.

* ViroseqTM HIV-1 Genotyping system (Celera Diagnostics, USA).
Study Population

- 138 eligible patients (from 572 patients)
- 47 had baseline and follow-up samples available for analysis.

<table>
<thead>
<tr>
<th>Age</th>
<th>Median (range)</th>
<th>37(24-57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td>White</td>
<td>91%</td>
</tr>
<tr>
<td></td>
<td>Black Caribbean</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Black African</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>3%</td>
</tr>
<tr>
<td>Viral load increase log$_{10}$ copies/ml</td>
<td>Median (range)</td>
<td>0.6 (0.5-2.2)</td>
</tr>
</tbody>
</table>
Phylogenetic analysis

- Sequence subtyping was carried out using RIP3.0 and REGA subtyping tools.

- Identification of genetically divergent sequence pairs was carried out using an HKY85 model in PAUP, with further characterization carried out using PhyML3.0.

- Scanning for potential recombination was carried out using SimPlot distance plotting and Recombination Detection Program v3.41.
Results

- 45/47 (96%) patients showed no evidence of sequence divergence
- 2 (4%) showed substantially divergent *pol* sequences between baseline and follow up samples
 - White patients aged 28 and 41 years
- Patient 1 had seroconverted during the previous 6 months, whereas Patient 2 had established infection
- Both patients were infected with subtype B prior to VL increase and showed evidence of the presence of a divergent subtype B following VL increase
Phylogenetic analysis of Pol population sequences

Maximum likelihood trees drawn in PhyML3.0 with pol population sequences from each patient and using 243 subtype B reference sequences from Los Alamos database.
Resistance mutations found in pre-VL load increase and post-VL increase

Patient 1

<table>
<thead>
<tr>
<th>Date</th>
<th>RT mutations</th>
<th>PR mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 05</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Oct 05</td>
<td>V179D G33E</td>
<td>None</td>
</tr>
</tbody>
</table>

Patient 2

<table>
<thead>
<tr>
<th>Date</th>
<th>RT mutations</th>
<th>PR mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 04</td>
<td>M41L T215S</td>
<td>L63P, I93L</td>
</tr>
<tr>
<td>Oct 05</td>
<td>None</td>
<td>L10V</td>
</tr>
</tbody>
</table>
Patient histories: Patient 1

Figure 1: Kinetics of CD4 count and plasma viral load in Patient 1

Presented at the 8th European HIV Drug Resistance Workshop, March 17-19 2010, Sorrento, Italy
Clonal analysis - Methods
Patient 1

- Clones were generated from plasma viral RNA at baseline (50 clones) and from CD4-derived proviral DNA after the increase (50 clones).

- The CD4 cells were separated from peripheral blood mononuclear cells (PBMC) using magnetic beads.

- PCR products (1.4kb) containing the whole protease and two thirds of RT were amplified in 10 separate reactions, pooled and cloned using TOPO TA technology.
Clonal analysis - Results
Patient 1

Maximum-likelihood trees drawn in PhyML3.0. Pre-VL increase sequences highlighted in red; post-VL increase sequences highlighted in blue. Bootstrap values showing 100% support are indicated (1000 replicates)

Post-viral load increase

Pre-viral load increase
Antibody neutralisation
Patient 1

- Antibody neutralisation activity of early and late sera was measured as a function of a reduction in Tat-induced luciferase reporter gene expression in TZM-bl cells after a single round of infection.
- No significant neutralisation was demonstrated against reference, heterologous subtype B viruses, as well as subtypes A, C and CRFO2 strains.
Patient 1: Follow-up

- The patient continued to engage in high risk sexual behaviour
- Over the subsequent six months acquired primary syphilis and primary genital herpes with documented HSV-2 antibody seroconversion
Patient histories: Patient 2

- Evidence of transmitted drug resistance (M41L, T215S), established infection and a CD4 count of 1184 cells/mm³ at diagnosis.
- Three years later, viral load increased from 3.5 to 5.7 \log_{10} copies/ml. He was asymptomatic.
- Phylogenetic analysis suggested infection with a divergent virus strain, which did not show drug-resistance mutations.
- Over the subsequent year, the viral load returned to 3.5 \log_{10} copies/ml, whereas the CD4 count remained >1000 cells/mm³ in the absence of antiretroviral therapy.
a) Maximum likelihood tree drawn in PhyML3.0 with *int* population sequence
b) Maximum likelihood tree drawn in RAxML with *gag* and using 243 subtype B reference sequences from Los Alamos database.

Presented at the 8th European HIV Drug Resistance Workshop, March 17-19 2010, Sorrento, Italy
Other findings

- Initial screening suggested superinfection in 3 other patients, including 2 with possible evidence of recombination.
- Further analysis of pol, gag, and integrase excluded the events.
Conclusions

- 4% (2/47) HAART-naïve MSM showing a viral load increase of $\geq 0.5 \log_{10}$ cps/ml during routine clinical monitoring had evidence of superinfection.
- Viral load increases are common, but superinfection is not a common cause in MSM.
- The superinfecting strains can outgrow the previously established virus and become established as the dominant replicating species in peripheral blood.
- Superinfection can be associated with a recurrence of symptoms of primary infection or occur in the absence of recognised symptoms.
- HIV-1 infected patients who engage in high-risk sexual behaviour are at risk of superinfection both in the early and established phase of the disease.
Acknowledgements

AM Geretti
J Ambrose (Phylogenetics)
A Garcia, A Strang, G Foster (molecular work)
V Cambiano, A Phillips (epidemiology and statistics group)
UCL Medical School and UCL Partners, Royal Free Hospital, London.

Hannah Dreja, Aine McKnight (Antibody neutralisation)
Barts and the London NHS Trust and Queen Mary University London