Management of Hepatitis B & C in Resource Limited Settings

John Idoko MD
National Agency for the Control of AIDS, Abuja Nigeria

June 1, 2010

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Outline

• How prevalent is HBV and HCV in RLS?
• Why is it important to treat HBV and HCV in RLS?
• What current management modalities?
• In RLS, does HBV impact HIV disease or early response to HAART?
• Conclusions

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HIV prevalence: UNAIDS 2006

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HIV-HBV co-infection affects 4 million people

90% (36 million) of HIV-infected persons have HBV marker
One in six HIV-infected persons in developing countries has CH-B

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HBV Epidemiology

- 300–400 million infected worldwide
- HIV 5–30+% depending upon cohort, country
- Africa
 - Uganda 73% (n=64)
 - Tanzania 9% (n=66), Malawi 16.9% (n=279)
- Nigeria
 - HIV pop 16.7% (Jos, Nigeria)
 - Gen pop/blood donors 9.7%, 21%, 25%, 10% (Jos),
 - HIV prevalence 4.6% (3 million individuals)
- Thailand
 - HIV pop 8.7%
 - Gen pop 3%

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HIV negatively affects natural history of chronic hepatitis B

- Increased risk of CH-B (up to 6x ↑)
- ↓HBeAg clearance
- ↑ HBV DNA
- Loss of anti-HBs+
- ↑HCC with ↓CD4 count
- Increased cirrhosis/liver mortality
 - ALT not higher

5293 men (326 CH-B) followed 10.5 years

Thio et al, Lancet 2002

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Goals of Hepatitis B Treatment

- Prevention of long-term negative clinical outcomes (e.g., cirrhosis, HCC, death) by durable suppression of HBV DNA
- Primary treatment endpoint
 - Sustained decrease in serum HBV DNA level to low or undetectable
- Secondary treatment endpoints (RLS)
 - Decrease or normalize serum ALT
 - Improve liver histology
 - Induce HBeAg loss or seroconversion
 - Induce HBsAg loss or seroconversion

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Approach to HBV treatment in HIV-infected patient

<table>
<thead>
<tr>
<th>Virus needing treatment</th>
<th>Considerations</th>
<th>Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>PEG-IFN or adefovir or early HAART</td>
<td>LMV/FTC/TDF/ETV without anti-HIV regimen</td>
</tr>
<tr>
<td>HIV or HIV/HBV</td>
<td>TDF+ FTC/LMV ETV with full HAART</td>
<td>LMV/FTC/TDF/ETV without anti-HIV regimen</td>
</tr>
<tr>
<td>Naive</td>
<td>TDF+ FTC/LMV ETV with full HAART</td>
<td>LMV/FTC/TDF/ETV without anti-HIV regimen</td>
</tr>
<tr>
<td>Prior LMV</td>
<td>TDF + FTC/LMV TDF+ ETV with HAART</td>
<td>LMV/FTC/TDF/ETV without anti-HIV regimen</td>
</tr>
</tbody>
</table>

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Management of co-infected patients in RLS – What is different?

• Need for modification of recommendations to account for limited availability of anti-HBV agents and diagnostics

• Of the 7 agents used for treatment in High income countries:
 – 3TC widely available
 – TDF & Adefovir limited availability
 – TDF increasingly more available because of expanding ART programs

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Management of HBV mono and HIV co-infected patients in RLS

- **PHC/Clinic 1st**: HBsAg and Liver enzymes before initiation of HAART

- **District level -2nd**: Assessmt for liver disease and complications. Routine monitoring of Liver enzymes once or twice during the first 6 months & when CD4 or HIV RNA is assayed

- Presence of HBeAg & repeatedly elevated enzymes suggests active disease and need for anti-HBV therapy (District/regional centres)

- Detection of HBV DNA is helpful but this is unlikely to be available – Regional centres

- Presence of HBeAg adds further weight (May also not be available in many programs)

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
New WHO ART guidelines (2009)

‘Everyone with hepatitis B virus (HBV) co-infection that needs treatment, should start treatment with a regimen based on tenofovir and either 3TC or FTC, regardless of CD4 T-cell count’
TDF/LMV or FTC efficacious as HBV therapy in HIV-HBV co-infection in Thailand

- 36 HIV/HBV Thai subjects in RCT
- No difference in HBV DNA decline or HBeAg SC at 48 wks
- Drug-resistant HBV in 2 subjects in LMV group

Matthews et al, Hepatol 2008

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Maintainance therapy

- Unless HBeAg seroconversion occurs, once 3TC or TDF started as part of HAART, continue indefinitely

- If co-infected patients switched to 2nd line HAART, discontinue anti-HBV only if HBeAg seroconversion for 6 mths

- Premature discontinuation may lead to acute hepatitis (17%); also caused by 3TC resistance
Lamivudine-Resistance develops more rapidly in HIV-coinfection

- Emergence of resistance is clinically evident with elevation in ALT/AST
- In US, 90% of coinfected persons with h/o LAM use

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection,
31 May – 2 June 2010, Tel Aviv, Israel
Monitoring HBV on therapy

• On therapy:
 – Serum ALT- check every 6 months
 – HBV DNA- every 6 months

• Off therapy
 – Monitor HBV DNA and ALT with change in HIV status

• HCC: monitor with imaging, α-feto protein or Lx Biopsy
 – cirrhotics
 – API: > 40y or family history

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Hepatitis B Virus Co-infection Impacts Baseline HIV Parameters and HAART-related Hepatotoxicity Risk in an HIV-infected Nigerian Cohort.

- John Idoko¹, Seema Meloni², Mohammed Muazu¹, Claudia Hawkins³, Bitrus Bidang¹, Nimzing Gwamzi¹, Phyllis Kanki², Robert Murphy³. Ernest Ekong⁴, Chloe Thio⁵

¹Jos University Teaching Hospital, Plateau State, Nigeria, ²Harvard School of Public Health, Boston, MA, USA, ³Northwestern University, Chicago, IL, USA, ⁴Military Reference Hospital, Lagos, Nigeria, ⁵Johns Hopkins Medical Institutions, Baltimore, MD, USA.

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HBV Co-infection Impacts Baseline HIV Parameters and HAART-related Hepatotoxicity

- 1968 subjects tested
- 229 (16.7%) HBsAg+
- Compared to HIV monoinfection, the HBV/HIV group had:
 - Lower CD4: 99 vs 132 (p<0.0001)
 - Higher HIV RNA: 91529 vs 53278 (p<0.0001)
 - Less CD4 increase on HAART: 220 vs 247 (p=0.02)
 - Higher ALT: 42.9 vs 31.7 (p=0.01)
 - More hepatotoxicity: 4.3% vs 0.4% (p=0.007)
Table 2: HIV RNA <200 copies/ml at 3 and 6 months

<table>
<thead>
<tr>
<th></th>
<th>HIV/HBV</th>
<th>HIV/HBeAg+</th>
<th>HIV/HBeAg-</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months (%)</td>
<td>65</td>
<td>67</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>6 months (%)</td>
<td>74</td>
<td>76</td>
<td>75</td>
<td>76</td>
</tr>
</tbody>
</table>

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Figure 3: Median baseline CD4 cell count stratified by HIV and HBV status

![Bar graph showing median baseline CD4 cell count stratified by HIV and HBV status.]

Table 3: CD4 cell count at 6 months

<table>
<thead>
<tr>
<th></th>
<th>HIV/HBV</th>
<th>HIV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (cells/mm³)</td>
<td>222</td>
<td>247</td>
<td>0.01</td>
</tr>
<tr>
<td>>50 cell/mm³ (%)</td>
<td>75</td>
<td>73</td>
<td>NS</td>
</tr>
</tbody>
</table>

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Effect of HBV DNA Levels on HIV Infection and Response to ART in a HIV/HBV Co-infected Nigerian Cohort

John Idoko1, Seema Meloni2, Mohammed Muazu1, Claudia Hawkins3, Bitrus Bidang1, Nimzing Gwamzi1, Phyllis Kanki2, Robert Murphy3, Ernest Ekong4, Chloe Thio5

1Jos University Teaching Hospital, Plateau State, Nigeria, 2Harvard School of Public Health, Boston, MA, USA, 3Northwestern University, Chicago, IL, USA, 4Military Reference Hospital, Lagos, Nigeria, 5Johns Hopkins Medical Institutions, Baltimore, MD, USA

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HBV associated with lower CD4 count in HIV+ Nigerian PEPFAR cohort

<table>
<thead>
<tr>
<th></th>
<th>HBV DNA (IU/ml)</th>
<th>HBeAg status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><20,000</td>
<td>≥20,000</td>
</tr>
<tr>
<td>Median CD4+ T-cell count (cells/mL)</td>
<td>129</td>
<td>85</td>
</tr>
<tr>
<td>Median HIV RNA (log cp/mL)</td>
<td>4.99</td>
<td>4.97</td>
</tr>
<tr>
<td>Median ALT (IU/mL)</td>
<td>20</td>
<td>29</td>
</tr>
</tbody>
</table>

In multivariate analysis, high HBV DNA and HBeAg+ status independently associated with lower CD4 counts

Idoko et al, CID 2010

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HBeAg positive subjects have slower LMV-based HAART response

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio for HIV RNA ≤ 400 cp/ml at 24 weeks</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBeAg neg</td>
<td>1.27</td>
<td>0.81-1.98</td>
<td>0.30</td>
</tr>
<tr>
<td>HBeAg pos</td>
<td>0.54</td>
<td>0.31-0.92</td>
<td>0.02</td>
</tr>
<tr>
<td>Baseline HIV RNA</td>
<td>per 1 log increase</td>
<td>0.66-0.91</td>
<td>0.002</td>
</tr>
</tbody>
</table>

By 48 weeks, no difference in HIV RNA suppression

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HIV/HCV Coinfection in RLS

- Dearth of data on HIV/HCV coinfection
- HIV accelerates HCV disease
- HCV infection influence on HIV
 - ARV-associated hepatotoxicity
 - Response to ARV therapy
 - Natural history of HIV disease
 - Extrahepatic manifestations

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HIV/HCV Infection in Jos Nigeria

- 1968 patients tested
- 271 (13.8%) HCV/HIV coinfected
 - Monoinfection (Nigeria-2%, 4.5%, 6%)
- HCV/HIV coinfected vs monoinfected patients had:
 - No difference in baseline HIV RNA or CD4
 - Older: 38 vs 34 yrs (p<0.0001)
 - Higher increase in ALT at 6 months: 41.5 vs 30.6 (p<0.003)
 - More hepatotoxicity: 2.0% vs 0.3% (P<0.05)

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Risk Factors for Progressive Fibrosis and Cirrhosis

- Longer duration of infection
- Alcohol excess (>50 gm/day)
- Persistently elevated ALT levels
- Age >40 years at time of infection
- Male gender
- Coinfections: HBV, HIV, Schistosomiasis
- High BMI, obesity
- Organ transplantation

Poynard T, Lancet 1997 349:825-32
Benhamou J, Hepatology 1999 30:1054-8
Kamal S, Hepatology 2006;43:771-779
Asselah T, Gut 2006, 55:123-130

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Treatment Goals

- **Viral eradication**
 - Sustained loss of HCV RNA in serum (6 mos post-Rx)

- **Prevention of disease progression**
 - Normalization of liver enzymes
 - Improved quality of life
 - Improved liver histology
 - Decreased cirrhosis
 - Decreased HCC
 - Improved survival

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
HCV Treatment and Status of HIV Disease

• **Advanced and uncontrolled HIV Disease**
 – Little justification for HCV treatment

• **Stable HIV disease not requiring ARVs**
 – Candidate for HCV treatment with close monitoring
 – ACTG Study 5184

• **Stable HIV disease on ARVs**
 – Good candidate (particularly if CD4>200 cells/uL)
 – Increased toxicity with ZDV and ddl
 – Potential decreased HIV activity with ZDV, d4T

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Management of HCV HIV

- Diagnosis & clinical evaluation
- Is HCV active viral infection
- Monitoring
- Treatment
 - Pegylated interferon
 - Ribavirin
 - Alcohol, substance use, psychiatric illness
- Diagnosis of End stage liver disease
- Liver transplant (Not available)
- Palliative mgt – (cirrhosis, HCC)

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Conclusion

• In RLS, the high prevalence of HIV and HBV has given rise to high burden of co-infection

• Management of HBV, HCV and coinfection with HIV is handicapped by the availability of drugs and diagnostics

• Among HIV-infected Nigerian individuals, HBV coinfection, especially among those with high levels of HBV replication, was associated with lower CD4+ T cell counts at ART initiation

• Patients with HBeAg-positive status had a slower virological response to ART, compared with HBeAg negative patients.

• Further work is needed to understand the effects of HBV on CD4+ T cells and immune response to HAART

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel
Acknowledgements

Johns Hopkins University, Baltimore USA
Choe Thio

Jos, Nigeria
Ladep Nimzing
Mohammed Muazu
Bitrus Badung

Harvard School of Public Health, Boston USA
Seema Meloni
Phyllis Kanki
Carmi Graham

Northwestern University, Chicago USA
Robert Murphy
Claudia Hawkins

AIDS Prevention Initiative Nigeria
Ernest Ekong
Prospoer Okonkwo

Funding
NIH AI5535901, DK074348, AI060449, AI071820, AI5535901, AI016137, AI038858 . Cooperate Agreement No. U51HA02522 from HRSA

Presented at the 6th International Workshop on HIV & Hepatitis Co-infection, 31 May – 2 June 2010, Tel Aviv, Israel