Pharmacokinetic Enhancement with Ritonavir: More Than It Seems?

Dale Kempf, Barry Bernstein, Daniel Bow, David Beno, William Chiou, Jürgen Delzer, Jinrong Liu, Kennan Marsh, Keith McDaniel, Rajeev Menon, Tim Middleton, Jianwei Shen, Richard Voorman

5th International Workshop on Clinical Pharmacology of Hepatitis Therapy, June 23, 2010

Acknowledgments: Nancy Shulman (Roche), Rob Ralston (Merck/Schering), Enanta Pharmaceuticals
PK Boosting of HCV Protease Inhibitors

• PK boosting with ritonavir is a well-accepted strategy for optimizing the efficacy and safety of protease inhibitors in HIV therapy
 – Increased plasma trough levels contribute to enhanced antiviral activity
 – Lower doses (and lower Cmax) may provide better safety
• C\text{trough} correlated with antiviral activity
• Similar metabolic pathways for HCV and HIV PIs
 – Primary metabolism via CYP3A
 – Metabolism inhibited by ritonavir (\textit{in vitro} CYP3A \text{Ki} = 15 \text{nM})
Inhibition of the Metabolism of Telaprevir and Boceprevir by Ritonavir in Human Liver Microsomes

- Similar inhibition in both human and rat liver microsomes:

![Graphs showing % Remaining (HLM) over time for Telaprevir and Boceprevir with different concentrations of Ritonavir](image)

Pharmacokinetic Boosting of Telaprevir and Boceprevir by Co-dosing with Ritonavir in Rats

Mean (±SE) Plasma Concentrations in Rats (5 mg/kg oral dose)

PK Boosting of HCV Protease Inhibitors with Ritonavir: Some Interesting Questions Since 2006

• Does ritonavir boost HCV PIs in humans?
• Can both classes of HCV PIs (ketoamides and acylsulfonamides) be boosted?
• Does ritonavir boosting increase antiviral activity?
• What is the best PK predictor(s) of PD: C_{max}, AUC, C_{min}?
• What are the mechanisms of ritonavir PK boosting?
 – Inhibition of metabolism
 – Inhibition of transport
• Does ritonavir boosting change the liver:plasma ratio?
• What is the effect of ritonavir induction?
Structures of Danoprevir and Narlaprevir

Narlaprevir (SCH900518)
Ketoamide

Danoprevir (ITMN-191)
Acylsulfonamide
PK Boosting of Narlaprevir by Ritonavir in Humans

Mean Narlaprevir Concentration/Time Profiles Based on Daily or Twice Daily Dosing from NEXT-1*

Daily and twice daily dosing achieved by metabolic inhibition with ritonavir
*Generated using Sparse Sampling and Population PK Model (No Lead-in Arms)

Poordad et al, AASLD, 2009
PK Boosting of Danoprevir by Ritonavir in Humans

- Boosting: $C_{\text{max}} \uparrow 3$-fold, $\text{AUC} \uparrow 6$-fold, $C_{12h} \uparrow >50$-fold
- 100/100 mg BID vs. 900 mg BID: $C_{\text{max}} \downarrow 23$-fold, $\text{AUC} \downarrow 16$-fold

Haznadar et al, EASL, 2010; Gane et al, EASL, 2010
Antiviral Activity of Narlaprevir/Ritonavir

Undetectable* HCV-RNA by Treatment Week

Poordad et al, AASLD, 2009

*HCV RNA < 10 IU/mL (includes all patients that received at least one dose of NVR, excluding control)
Antiviral Activity of Danoprevir/Ritonavir

Danoprevir/r + SOC regimens provide more robust virologic response than unboosted + SOC

- Unboosted 900 mg BID (n=7)
- Boosted 100/100 mg BID (n=9)
- Boosted 200/100 mg QD (n=8)
- Boosted 200/100 mg BID (n=8)

Day 15 HCV RNA <LLOQ or <LLOD (%)

- LLOQ = lower limit of quantification by Roche TaqMan Assay <43 IU/mL (<25 IU/mL for NSHC-003)
- LLOD = lower limit of detection by Roche TaqMan Assay <15 IU/mL (<9.3 IU/mL for NSHC-003)

Gane et al, EASL, 2010
ABT-450: *in vitro* Antiviral Activity

<table>
<thead>
<tr>
<th></th>
<th>Replicon EC<sub>50</sub> (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genotype 1a</td>
</tr>
<tr>
<td></td>
<td>no human plasma</td>
</tr>
<tr>
<td>ABT-450</td>
<td>0.9</td>
</tr>
<tr>
<td>MK-7009</td>
<td>0.75</td>
</tr>
<tr>
<td>Danoprevir</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- ABT-450 is a new acylsulfonamide HCV protease inhibitor
- Metabolism of ABT-450 is primarily mediated through CYP3A4
ABT-450: *in vitro* Antiviral Activity

<table>
<thead>
<tr>
<th></th>
<th>Estimated EC<sub>50</sub> (40% Human Plasma, nM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1a-H77</td>
</tr>
<tr>
<td></td>
<td>R155 K</td>
</tr>
<tr>
<td>ABT-450</td>
<td>370</td>
</tr>
<tr>
<td>MK-7009</td>
<td>5200</td>
</tr>
<tr>
<td>Danoprevir</td>
<td>1600</td>
</tr>
</tbody>
</table>

*Estimated EC₅₀ (mutant, 40% HP) = EC₅₀ (mutant, transient replicon) X Fold EC₅₀ (stable replicon, 40% HP).
Metabolism and PK of ABT-450

<p>| Intrinsic Clearance (Liver Microsomes, µL/mg/min) |
|------------------------------------|------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Rat</th>
<th>Dog</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT-450</td>
<td>31</td>
<td>50</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><23</td>
</tr>
</tbody>
</table>

Pharmacokinetics of ABT-450 in Dogs

Plasma

- IV; 2.5 mg/kg
- PO; 5 mg/kg
- PO; 5 mg/kg w/RTV 5 mg/kg

Liver

- Liver; 2 mg/kg + RTV 5 mg/kg
- Plasma; 2 mg/kg + RTV 5 mg/kg

Liver:plasma ratio = 7
Ritonavir Boosting of ABT-450 in Humans

Effect of 100 mg RTV:
- ABT-450 $t_{1/2}$ ↑ from ~2.5 to ~ 5 hours
- ABT-450 C_{max} ↑ 28-fold
- ABT-450 AUC ↑ 48-fold
- C_{24h} ↑ nearly 200-fold
- PK boosting allows for higher exposure and QD dosing

<table>
<thead>
<tr>
<th>Species</th>
<th>ABT-450</th>
<th>Ritonavir</th>
<th>$t_{1/2}$ (h)</th>
<th>C_{max} (μg/mL)</th>
<th>AUC (μg*h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>5 mg/kg</td>
<td>—</td>
<td>1.2</td>
<td>6.3</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>5 mg/kg</td>
<td>5 mg/kg</td>
<td>1.8</td>
<td>22.7</td>
<td>84.8</td>
</tr>
<tr>
<td>Human</td>
<td>300 mg</td>
<td>—</td>
<td>2.7</td>
<td>0.12</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>300 mg</td>
<td>100 mg</td>
<td>4.6</td>
<td>3.4</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Menon et al, Hep DART, 2009
PK Boosting of ABT-450 by Ritonavir

Mean ABT-450 PK Parameters (Day 14 w/RTV)

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>50/100 BID</th>
<th>100/100 BID</th>
<th>200/100 QD</th>
<th>300/100 QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (µg/mL)</td>
<td>0.07</td>
<td>0.37</td>
<td>1.5</td>
<td>7.3</td>
</tr>
<tr>
<td>AUC (µg·h/mL)</td>
<td>0.41</td>
<td>1.6</td>
<td>5.6</td>
<td>36</td>
</tr>
<tr>
<td>AUC/Dose</td>
<td>16.5</td>
<td>31.5</td>
<td>32.5</td>
<td>128</td>
</tr>
</tbody>
</table>

Menon et al, Hep DART, 2009, Bernstein et al, Hep DART, 2009
Boosting of Metabolically Stable Protease Inhibitor (AE-741) by Ritonavir

<table>
<thead>
<tr>
<th>Species</th>
<th>C_{int} *</th>
<th>C_{max} *</th>
<th>AUC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>13.8</td>
<td>16.9</td>
<td>54.3</td>
</tr>
<tr>
<td>Dog</td>
<td>15.1</td>
<td>37.0</td>
<td>435</td>
</tr>
</tbody>
</table>

*µL/mg/min, **µg/mL, #µg h/mL,

Plasma Levels after Oral Dosing in Dogs (3 mg/kg)
Potential PK Boosting Through Transporter Inhibition by Ritonavir

Ritonavir May Boost ABT-450 via P-gp Inhibition

- Efflux ratio (6.3) in Caco-2 cells indicates active transport of ABT-450
- Active efflux partially (but not completely) blocked by selective P-gp inhibitor LY335979
- Ritonavir has been reported to inhibit P-gp \textit{in vitro} (IC$_{50}$ 0.2 - 16 µM, multiple systems)*
 - However, little effect on BBB P-gp transport of SQV \textit{in vivo}**
- Most likely inhibition in intestine where local concentrations are high

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
 & ABT-450 Papp (1X10$^{-6}$ cm/s) & \\
\hline
 & No inhibitor & + LY335979 & \\
\hline
A-to-B & 10.1 & 18.6 & \\
B-to-A & 63.8 & 59.4 & \\
Efflux Ratio & 6.3 & 3.2 & \\
\hline
\end{tabular}
\caption{ABT-450 is a P-gp Substrate}
\end{table}

Ritonavir Does Not Affect the Liver:Plasma Ratio of ABT-450

Plasma and Liver Concentrations in Dogs

- Liver; 2 mg/kg
- Liver; 2 mg/kg + RTV
- Plasma; 2 mg/kg
- Plasma; 2 mg/kg + RTV

Plasma or Liver Conc. (µg/mL or µg/g)

Time (Hours Post Dose)

Mean = 7.0
Mean = 6.7
ABT-450 C_{trough} vs. Time

Bernstein et al, Hep DART, 2009
Ritonavir Boosting of HCV PIs: Conclusions

• As in HIV therapy, PK boosting by ritonavir can be advantageous for HCV protease inhibitors
 – Less frequent dosing → greater convenience
 – Increased C_{trough} → greater virologic response
 – Decreased C_{max} and AUC → potential for lower toxicity
• Both classes of HCV protease inhibitors (ketoamide and acylsulfonamide) may be candidates for PK boosting
• The mechanism of PK boosting of HCV PIs appears more complex than simple CYP3A inhibition (more studies needed)
 – Intestinal transport → likely
 – Biliary transport → possible
 – Hepatic uptake → less likely
• HCV PIs may be affected by ritonavir even if they are metabolically stable
• The boosting effect of other CYP3A inhibitors on HCV PIs may be distinct from ritonavir and requires study
Acknowledgments

Drug Metabolism
- Daniel Bow
- Jinrong Liu
- Jianwei Shen
- Richard Voorman
- William Chiou
- Jürgen Delzer

Preclinical PK
- David Beno
- Kennan Marsh

Discovery
- Keith McDaniel
- Tim Middleton
- Enanta Pharmaceuticals

Clinical / PK
- Rajeev Menon
- Barry Bernstein
- Nancy Shulman (Roche)
- Rob Ralston (Merck/Schering)