Pharmacokinetics of Filibuvir in Special Populations (Elderly and Hepatically Impaired)

Vivek S Purohit, PhD

Pfizer, Clinical Pharmacology

New London, USA
Disclosures

- Dr. Purohit is an employee of Pfizer, Inc.
- All studies discussed in this presentation were sponsored by Pfizer, Inc.
Acknowledgements

- Pfizer Study Team
 - M Rosario*, M O’Gorman, J Fang, S Srinivasan and J Hammond

- Editorial assistance with preparation of this presentation was provided by Susanne Gilbert of ACUMED (New York, USA) and funded by Pfizer, Inc.

*Currently at Vertex Pharmaceuticals, Clinical Pharmacology, Cambridge, USA
presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Filibuvir

- A non-nucleoside inhibitor of the HCV polymerase enzyme
- Binds the “Thumb 2” site of the HCV polymerase enzyme
- Demonstrates potent *in vitro* antiviral activity with an overall mean EC$_{50}$ against genotype 1 replicons of 0.059 µM (0.029 µg/mL)
- Equipotent against subtypes 1a and 1b
- Signature resistance mutation is M423T
Filibuvir – Studies in HCV-Infected Patients

- Filibuvir in monotherapy studies in HCV-infected patients demonstrated ~2 log drop in viral load at nadir.

- Filibuvir in combination with pegIFN and ribavirin produced RVR rates of up to 75% and cEVR of up to 88%.

RVR = rapid viral response; BID = twice daily
TID = three times daily

Presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Filibuvir Clinical Pharmacology

- Rapidly absorbed (T_{max} 0.5–4 hours)
- Nonlinear pharmacokinetics
 - Exposures increase more than proportional with dose
- ~98% protein bound
- Primarily metabolized by CYP3A
- ~17% of dose eliminated unchanged in urine
- Terminal $T_{1/2}$ of 8–12 hours (biphasic elimination)
Pharmacokinetics, Safety and Tolerance of Multiple Oral Doses of Filibuvir in Elderly Healthy Volunteers

M Rosario,1 M O'Gorman,2 J Fang,3 S Srinivasan,4 V Purohit2

1Vertex Pharmaceuticals, Clinical Pharmacology, Cambridge, USA
2Pfizer, Clinical Pharmacology, New London, USA
3Pfizer, Biostatistics, New London, USA
4Pfizer, Clinical Development, New London, USA

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Rationale and Objective

- Filibuvir is predominantly metabolized by CYP3A
 - Age-dependent decreases in enzymatic activity can reduce clearance of filibuvir in elderly\(^1\)
- As the HCV-infected population ages, a greater proportion of infected patients will fall into the elderly categories
 - An understanding of filibuvir pharmacokinetics in the elderly is important
- The objectives of this study are to investigate the multiple-dose pharmacokinetics, safety and tolerability of 300 mg BID of filibuvir in healthy elderly and young subjects

\(^1\)Michael B. Mayersohn. Special Pharmacokinetic Considerations in the Elderly. Applied Pharmacokinetic Principles of Therapeutic Drug Monitoring. 3rd Ed., 1992., Chapter 9, 1-43
Study Design

- Non-randomized, parallel, three-cohort study
- N=37 subjects
 - 18–55 years (N = 12)
 - 65–74 years (N = 13)
 - 75–85 years (N = 12)
- Regimen – filibuvir 300 mg BID with food for 14 days
- Extensive pharmacokinetic sampling on Day 1 and Day 14
- Safety was assessed throughout the treatment period and follow-up
- One-way analysis of variance (ANOVA) was used to compare the natural log-transformed AUC_{0-12} and C_{max} (Day 14) and the accumulation ratios (AUC_{0-12} and C_{max}) for elderly and very elderly age groups (Test) as compared with the young age group (Reference)
Demographic Characteristics

<table>
<thead>
<tr>
<th>Demographic characteristic</th>
<th>Young adults (18–55 years)</th>
<th>Elderly (65–74 years)</th>
<th>Very elderly (75–85 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>11/1</td>
<td>7/6</td>
<td>5/7</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>78.4 (5.7)</td>
<td>78.9 (12.5)</td>
<td>76.9 (10.4)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>69.8–87.5</td>
<td>57.1–98.4</td>
<td>62.1–98.0</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.6 (2.5)</td>
<td>30.2 (4.1)</td>
<td>28.8 (3.2)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>20.0–28.9</td>
<td>23.5–34.8</td>
<td>23.6–34.2</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>175.2 (6.0)</td>
<td>161.7 (9.7)</td>
<td>163.3 (6.8)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>167.0–188.0</td>
<td>143.0–173.0</td>
<td>153.0–173.0</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Pharmacokinetic Results – Day 14 Median Concentration Profiles

- Young adults (18–55 years)
- Elderly (65–75 years)
- Very elderly (75–85 years)

Plasma filibuvir concentration (ng/mL) vs. Time (hours)
Pharmacokinetic Results

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Young adult (18–55)</th>
<th>Elderly (65–74)</th>
<th>Very elderly (75–85)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1 (single dose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>AUC_{0-12} (\text{ng}\cdot\text{hr/mL})</td>
<td>38570 (30)</td>
<td>47720 (24)</td>
<td>43710 (26)</td>
</tr>
<tr>
<td>C_{max} (\text{ng/mL})</td>
<td>14540 (26)</td>
<td>13010 (24)</td>
<td>13540 (36)</td>
</tr>
<tr>
<td></td>
<td>Day 14 (multiple dose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>AUC_{0-12} (\text{ng}\cdot\text{hr/mL})</td>
<td>49720 (31)</td>
<td>65860 (21)</td>
<td>61370 (28)</td>
</tr>
<tr>
<td>C_{max} (\text{ng/mL})</td>
<td>18600 (27)</td>
<td>15930 (39)</td>
<td>19110 (24)</td>
</tr>
<tr>
<td>C_{12} (\text{ng/mL})</td>
<td>535 (47)</td>
<td>958 (29)</td>
<td>711 (47)</td>
</tr>
<tr>
<td>$t_{\frac{1}{2}}$ (\text{hours})</td>
<td>9.13 (19)</td>
<td>12.2 (14)</td>
<td>14.2 (21)</td>
</tr>
<tr>
<td>$R_{\text{ac}}\cdot\text{AUC}$</td>
<td>1.27 (0.922–1.95)</td>
<td>1.33 (1.08–1.670)</td>
<td>1.35 (1.06–2.18)</td>
</tr>
<tr>
<td>$R_{\text{ac}}\cdot\text{C}_{\text{max}}$</td>
<td>1.28 (0.770–1.87)</td>
<td>1.16 (0.794–2.09)</td>
<td>1.36 (0.900–2.75)</td>
</tr>
</tbody>
</table>

$N =$ number of subjects; $R_{\text{ac}} =$ accumulation ratio

Geometric mean (\%CV) for all except: median (range) for T_{max}, R_{ac} and R_{ac}; arithmetic mean (\%CV) for $t_{\frac{1}{2}}$

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Pharmacokinetic Results (Cont’d)

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Comparison (Test vs Reference)</th>
<th>Test<sup>a</sup></th>
<th>Reference<sup>a</sup></th>
<th>Ratio (%)<sup>b</sup></th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0–12</sub> (ng•hr/mL)</td>
<td>Elderly vs young adults</td>
<td>65861.93</td>
<td>49718.48</td>
<td>132.47</td>
<td>110.01</td>
<td>159.51</td>
</tr>
<tr>
<td></td>
<td>Very elderly vs young adults</td>
<td>61367.81</td>
<td>49718.48</td>
<td>123.43</td>
<td>102.51</td>
<td>148.63</td>
</tr>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>Elderly vs young adults</td>
<td>15927.47</td>
<td>18600.46</td>
<td>85.63</td>
<td>68.62</td>
<td>106.85</td>
</tr>
<tr>
<td></td>
<td>Very elderly vs young adults</td>
<td>19113.69</td>
<td>18600.46</td>
<td>102.76</td>
<td>82.35</td>
<td>128.23</td>
</tr>
<tr>
<td>R<sub>ac</sub>, AUC</td>
<td>Elderly vs young adults</td>
<td>1.35</td>
<td>1.32</td>
<td>102.26</td>
<td>89.67</td>
<td>116.62</td>
</tr>
<tr>
<td></td>
<td>Very elderly vs young adults</td>
<td>1.40</td>
<td>1.32</td>
<td>106.63</td>
<td>93.50</td>
<td>121.60</td>
</tr>
<tr>
<td>R<sub>ac</sub>, C<sub>max</sub></td>
<td>Elderly vs young adults</td>
<td>1.23</td>
<td>1.29</td>
<td>95.42</td>
<td>78.45</td>
<td>116.06</td>
</tr>
<tr>
<td></td>
<td>Very elderly vs young adults</td>
<td>1.41</td>
<td>1.29</td>
<td>109.13</td>
<td>89.72</td>
<td>132.73</td>
</tr>
</tbody>
</table>

^aAdjusted geometric mean values; ^bRatio of adjusted geometric means

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Overview of Safety Results

- There were no deaths or SAEs
- No subject discontinued due to an AE or had a dose reduction or temporary discontinuation of treatment due to an AE
- No clinically important, treatment-related changes in safety laboratory test results, vital sign measurements, or ECGs were observed

AE = adverse event; SAE = serious adverse event

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Conclusions

- Steady-state filibuvir exposures (AUC_{0-12}) were 1.3-fold and 1.2-fold higher in the elderly and very elderly populations, respectively, relative to young adults.

- No clinically significant differences were noted in steady-state C_{max} for both elderly age groups relative to the young adults.

- The observed pharmacokinetic differences were not considered clinically meaningful and dose adjustments are not necessary in the elderly.

- Multiple doses of filibuvir were well tolerated by the young adult, elderly, and very elderly subjects evaluated in this study.
Pharmacokinetics, Safety and Tolerability of a Single Oral Dose of Filibuvir in Subjects with Hepatic Impairment

V Purohit,¹ M O'Gorman,¹ J Fang,² S Srinivasan,³ M Rosario,⁴ J Hammond³

¹Pfizer, Clinical Pharmacology, New London, USA
²Pfizer, Biostatistics, New London, USA
³Pfizer, Clinical Development, New London, USA
⁴Vertex Pharmaceuticals, Clinical Pharmacology, Cambridge, USA

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA
Rationale and Objective

- Filibuvir is predominately metabolized, thus its clearance may be reduced with hepatic impairment.

- The objectives of this study are to investigate the pharmacokinetics, safety and tolerability of a single 200 mg dose of filibuvir in subjects with mild and moderate hepatic impairment compared to subjects with normal hepatic function.
Study Design

- Open-label, single-dose, non-randomized, sequential study
- N=24 subjects (8 per group)
 - Healthy volunteers (normal hepatic function)
 - Mild hepatic impairment (Child-Pugh A)
 - Moderate hepatic impairment (Child-Pugh B)
- Regimen – filibuvir 200 mg single oral dose (fasted)
- Groups enrolled sequentially (mild hepatic impairment → moderate hepatic impairment → normal subjects)
- Pharmacokinetics samples were collected up to Day 8
- Safety assessments were made throughout the study
- One-way analysis of variance (ANOVA) was used to compare the natural log-transformed \(\text{AUC}_{\text{inf}} \) and \(\text{C}_{\text{max}} \) for each hepatic impairment group (mild and moderate) (Test) to the normal hepatic function group (Reference)
Pharmacokinetic Results – Median Plasma Concentrations.

- Normal
- Mild Hepatic Impairment (Child-Pugh A)
- Moderate Hepatic Impairment (Child-Pugh B)
Pharmacokinetic Results

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Normal hepatic function</th>
<th>Mild hepatic impairment</th>
<th>Moderate hepatic impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AUC_{\text{inf}} , (\text{ng}\cdot\text{hr/mL}))</td>
<td>37977 (37)</td>
<td>38632 (52)</td>
<td>87654 (49)</td>
</tr>
<tr>
<td>(C_{\text{max}} , (\text{ng/mL}))</td>
<td>11073 (37)</td>
<td>7487 (53)</td>
<td>15142 (35)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Comparison</th>
<th>Test(^a)</th>
<th>Reference(^a)</th>
<th>Ratio(^b) (%)</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AUC_{\text{inf}} , (\text{ng}\cdot\text{h/mL}))</td>
<td>Mild vs normal</td>
<td>38631.54</td>
<td>37977.47</td>
<td>101.72</td>
<td>(63.17%, 163.80%)</td>
</tr>
<tr>
<td></td>
<td>Moderate vs normal</td>
<td>87654.22</td>
<td>37977.47</td>
<td>230.81</td>
<td>(143.33%, 371.67%)</td>
</tr>
<tr>
<td>(C_{\text{max}} , (\text{ng/mL}))</td>
<td>Mild vs normal</td>
<td>7486.60</td>
<td>11072.59</td>
<td>67.61</td>
<td>(43.89%, 104.16%)</td>
</tr>
<tr>
<td></td>
<td>Moderate vs normal</td>
<td>15141.59</td>
<td>11072.59</td>
<td>136.75</td>
<td>(88.77%, 210.65%)</td>
</tr>
</tbody>
</table>

\(^a\)Geometric mean (%CV) for all

\(^b\)Ratio of adjusted geometric means
Overview of Safety Results

- There were no deaths and no permanent discontinuations from the study due to AEs.

- No subject required a dose reduction or temporary discontinuation due to AEs.
 - One SAE was reported in the moderate hepatic impairment group (exacerbation of pre-existing anemia) but was not considered to be due to study drug.

- Slightly more subjects in the moderate hepatic impairment group had laboratory test abnormalities (without regard to baseline abnormality), but none were considered clinically significant.
Conclusions

- Filibuvir exposures (AUC_{inf}) were not altered in subjects with mild hepatic impairment and were 2.3-fold higher in subjects with moderate hepatic impairment compared to subjects with normal hepatic function.

- No consistent trend was noticed for changes in C$_{\text{max}}$ with hepatic impairment.

- Overall, administration of single oral doses of 200 mg of filibuvir was considered safe and well tolerated in healthy subjects and subjects with mild and moderate hepatic impairment.

presented at the 5th Int. workshop on Clinical Pharmacology of Hepatitis Therapy 23 June 2010, Boston, USA