Population pharmacokinetics of rifampicin in South African tuberculosis patients and the influence of drug transporter polymorphisms

Emmanuel Chigutsa1, Marianne Visser2, Deirdre Egan3, Nicholas H.G. Holford4, Peter J. Smith1, Andrew Owen3, Helen Mcllkeron1

1 University of Cape Town Department of Medicine, Division of Clinical Pharmacology
2 University of the Western Cape School of Public Health
3 University of Liverpool Department of Pharmacology and Therapeutics
4 University of Auckland Faculty of Medical and Health Sciences

EMMANUEL CHIGUTSA (BPharm.Hons)

Presented at the 3rd Intl. Workshop on Clinical Pharmacology of TB Drugs
11 September 2010, Boston USA
Introduction

• In 2008, 9-10 million new cases of tuberculosis (TB) with 2 million deaths (WHO, 2009)

• **Rifampicin** is key drug in treatment of TB

• Antimycobacterial effect and resistance depend on rifampicin concentration (Gumbo et al, 2007)

• Previous studies have shown highly variable rifampicin plasma concentrations (Wilkins et al, 2008)
AIM

• To describe the population pharmacokinetics of rifampicin in TB patients on standard treatment and investigate factors affecting interindividual variability
Methods

Study Participants
- 57 patients with pulmonary TB in Western Cape
- 21 patients were sampled on a second occasion
- 3-8 plasma samples at steady state (437 observations)

Drug plasma concentration determination
- LC-MS-MS

Pharmacokinetic Analysis
- Population non-linear mixed effects modeling using NONMEM VII

Genotyping
- Real-time PCR using fluorescent probes for allelic discrimination
- Genes included ABCB1, PXR, CAR, SLCO1B1
RESULTS

Allele frequencies in study population

- **SLCO1B1**
- **ABCB1**
- **PXR**
- **CAR**

EMMANUEL CHIGUTSA (BPharm.Hons)

Presented at the 3rd Intl. Workshop on Clinical Pharmacology of TB Drugs
11 September 2010, Boston USA
Rifampicin Pharmacokinetic Model

DOSE

- $F = 1$ for wild type
- $F = 0.82$ for SLCO1B1 rs4149032 heterozygotes
- $F = 0.72$ for homozygotes

MTT

- $MTT = 1.6\text{h}$ for males
- $MTT = 2.1\text{h}$ for females
- 27% shorter MTT with increasing dose

CENTRAL COMPT

- $V = 44\text{L/70kg}$ for males
- $V = 31\text{L/70kg}$ for females

CL

- $CL = 11\text{ L/h/70kg}$

$Ka = 1.1/\text{h}$
Visual Predictive Check
Observations vs. Time (Run 0)

- **Observations**
- **Median of observations**
- **5th and 95th percentiles of observations**
- **Model predicted confidence interval for corresponding percentile**
Presented at the 3rd Intl. Workshop on Clinical Pharmacology of TB Drugs
11 September 2010, Boston USA
Presented at the 3rd Intl. Workshop on Clinical Pharmacology of TB Drugs
11 September 2010, Boston USA
Simulated Cmax before and after dose adjustment

Cmax mg/L

Wild type
Carrier dose 1
Carrier dose 2
Simulated AUC before and after dose adjustment

AUC$_{(0-\infty)}$ mg.h/L

Wild type Carrier dose 1 Carrier dose 2
• Study underpowered to detect effect of ABCB1, CAR and PXR genotypes
• Higher doses shortened MTT
• 463C>A, rs11045819 has recently been reported to decrease rifampicin AUC (Weiner et al, 2010), but this allele was rare in our study population
Conclusion

• The SLCO1B1 rs4149032 polymorphism exists at a high frequency and results in a decrease in bioavailability of rifampicin of up to 30%
• Further studies in a larger population are required to confirm these findings
Acknowledgements

• Virology Education
• Dr Paolo Denti
• SATBAT (NIH/FIC 5U2RTW007373 and 5U2RTW007370)
• Clinical Infectious Diseases Research Initiative (CIDRI) Wellcome Trust Fund 412164
• National Research Foundation (NRF) South Africa (2067444 and RCN 180353/S50), the Norwegian Programme for Development, Research and Higher Education (NUFUPRO-2007/10183), Research Council of Norway.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F L/h/70kg</td>
<td>11 (10-12)</td>
</tr>
<tr>
<td>V/F L/70kg</td>
<td>50 (44-52)</td>
</tr>
<tr>
<td>k_a /h</td>
<td>1.1 (0.9-1.3)</td>
</tr>
<tr>
<td>MTT h</td>
<td>1.6 (1.4-1.8)</td>
</tr>
<tr>
<td>Effect of female sex on V/F %</td>
<td>-30 (25-34)</td>
</tr>
<tr>
<td>Effect of female sex on MTT %</td>
<td>-30 (25-34)</td>
</tr>
<tr>
<td>Effect of $SLCO1B1$ rs41490932 on F1 in heterozygotes %</td>
<td>-18 (17-20)</td>
</tr>
<tr>
<td>Effect of $SLCO1B1$ rs41490932 on F1 in mutants %</td>
<td>-28 (21-30)</td>
</tr>
<tr>
<td>Effect of dose on MTT %</td>
<td>-27 (24-35)</td>
</tr>
<tr>
<td>BSV in F1 %</td>
<td>15 (12-16)</td>
</tr>
<tr>
<td>BSV in CL %</td>
<td>20 (18-29)</td>
</tr>
<tr>
<td>BSV in MTT %</td>
<td>52 (48-72)</td>
</tr>
<tr>
<td>Correlation between BSV in CL and MTT</td>
<td>0.86 (0.82-0.90)</td>
</tr>
<tr>
<td>WSV in F1 %</td>
<td>21 (16-22)</td>
</tr>
<tr>
<td>WSV in CL %</td>
<td>32 (30-48)</td>
</tr>
<tr>
<td>WSV in V %</td>
<td>29 (24-37)</td>
</tr>
<tr>
<td>WSV in MTT %</td>
<td>59 (47-63)</td>
</tr>
<tr>
<td>Correlation between WSV in V and MTT</td>
<td>-0.40 (-0.33 -0.74)</td>
</tr>
</tbody>
</table>