Post-Exposure Prophylaxis of Breastfeeding HIV-Exposed Infants with Antiretroviral Drugs to Age 14 Weeks: Updated Efficacy Results of the PEPI-Malawi Trial

Taha E. Taha¹, Newton Kumwenda¹, Donald Hoover², Qing Li³, Linda Mipando⁴, Kondwani Nkanaunena⁴, Fatima Zulu³, Linly Seyama³, Michael C. Thigpen⁵, Allan Taylor⁵, Mary Glenn Fowler⁶, Lynne Mofenson⁷

¹ Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
² Rutgers University, Piscataway, NJ
³ Inherited Disease Branch, National Human Genome Research Institute, NIH, Baltimore, MD
⁴ Johns Hopkins University-College of Medicine Res. Project, Blantyre, Malawi
⁵ Centers for Disease Control and Prevention, Atlanta, GA
⁶ Johns Hopkins University School of Medicine, Baltimore, MD
⁷ Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, MD

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
In 2008 we reported that Post-Exposure Prophylaxis of Infants (PEPI)-Malaw trial, data through August 2007, demonstrated extending daily infant antiretroviral prophylaxis to age 14 weeks reduced postnatal HIV-1 transmission by i) >65% during the period of prophylaxis ii) ~50% at age 9 months.

This analysis updates and extends efficacy estimates through age 24 months in all infants at study completion Sept. 2009.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
PEPI-Malawi Study Design

- Randomized, open-label, phase III trial of antiretroviral prophylaxis in Blantyre, Malawi, 2004-2009.

- Compares control arm of single-dose NVP+1 week ZDV to two 14 week extended prophylaxis arms in infants born to HIV-1 infected mothers.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Study Design

<table>
<thead>
<tr>
<th>Intra-partum*</th>
<th>Birth</th>
<th>Post-partum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVP x1*</td>
<td>Infant NVP x1</td>
<td>Infant ZDV x1 wk</td>
</tr>
<tr>
<td>Extended NVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVP x1*</td>
<td>Infant NVP x1</td>
<td>Infant ZDV x1 wk</td>
</tr>
<tr>
<td>Extended NVP + AZT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVP x1*</td>
<td>Infant NVP x1</td>
<td>Infant ZDV x1 wk</td>
</tr>
</tbody>
</table>

*If mothers diagnosed in time for intra-partum prophylaxis

Mothers counseled to exclusively breastfeed and wean by 6 months

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Primary Objectives

- Compare 14 week extended arms to control arm for probability of HIV-1 infection and death among infants not infected at birth.
 - Kaplan-Meier analysis of time to 1st positive HIV-1 test; death; & earliest of death or 1st positive HIV-1 test by arm
 - Primary outcome is HIV-1 infection by 9 months

- Evaluate safety of 14 week extended oral NVP and NVP+ZDV regimen in infants born to HIV-1 infected women.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
PEPI-Malawi Study

- Study visits at 1, 3, 6, 9 & 14 weeks and 6, 9, 12, 15, 18 & 24 months.

- Infant HIV-1 infection based on HIV-1 DNA PCR testing at each visit (or HIV-1 antibody ≥ 15 months).

- Safety based on clinical, hematology and chemistry assessments.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Study Profile

Antenatal:
Consented and screened 36,835 women: 7,490 HIV-infected (20%)

2,135 HIV-infected women enrolled

Enrolled in study:
3,334 women
3,397 infants

Infants randomized at birth

Control:
1,090 infants
69 HIV-infected at birth
17 undetermined HIV result

Extended NVP:
1,160 infants
79 HIV-infected at birth
10 undetermined HIV result

Extended NVP+ZDV:
1,147 infants
83 HIV-infected at birth
13 undetermined HIV result

Primary Analysis Dataset:
1,004 infants
215 Lost to follow-up:
Uninfected at last visit
116 parental refusal
56 relocation/lost contact
43 no further interest
85 Died: Uninfected at last visit
Reached HIV infection endpoint, or HIV uninfected and completed study
704 infants

Primary Analysis Dataset:
1,071 infants
253 Lost to follow-up:
Uninfected at last visit
112 parental refusal
67 relocation/lost contact
74 no further interest
91 Died: Uninfected at last visit
Reached HIV infection endpoint, or HIV uninfected and completed study
727 infants

Primary Analysis Dataset:
1051 infants
237 Lost to follow-up:
Uninfected at last visit
103 parental refusal
71 relocation/lost contact
63 no further interest
86 Died: Uninfected at last visit
Reached HIV infection endpoint, or HIV uninfected and completed study
728 infants

Intrapartum/Postpartum:
Consented and screened 9,351 women: 2,328 HIV-infected (25%)

1,081 HIV-infected women enrolled

Reached HIV infection endpoint, or HIV uninfected and completed study:
704 infants
85 Died: Uninfected at last visit

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Baseline Characteristics by Treatment Arm

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Extended NVP</th>
<th>Extended NVP+ZDV</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Value (SE)</td>
<td>N</td>
<td>Value (SE)</td>
</tr>
<tr>
<td>Maternal factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>989</td>
<td>26.1 (4.92)</td>
<td>1047</td>
<td>26.2 (4.64)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>957</td>
<td>11.6 (1.83)</td>
<td>1017</td>
<td>11.6 (1.98)</td>
</tr>
<tr>
<td>CD4 (cells/μL) Median (IQR)</td>
<td>401.0</td>
<td>942 (259.0-583.0)</td>
<td>378.0</td>
<td>1001 (248.0-570.0)</td>
</tr>
<tr>
<td>Late presenters %</td>
<td>312/989 (31.6)</td>
<td>327/1047 (31.2)</td>
<td>309/1033 (29.9)</td>
<td>.70</td>
</tr>
<tr>
<td>Infant factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>539/1004 (53.7)</td>
<td>526/1071 (49.1)</td>
<td>523/1051 (49.8)</td>
<td>.08</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>1002</td>
<td>3034.1 (453.21)</td>
<td>1070</td>
<td>3009.2 (450.6)</td>
</tr>
</tbody>
</table>

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Visit-specific Breastfeeding Frequencies Among HIV Uninfected Infants at Prior Visits

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Probability of HIV-1 Infection in Infants Uninfected at Birth by Treatment Arm with 95% CIs

<table>
<thead>
<tr>
<th>Age</th>
<th>1wk</th>
<th>6wk</th>
<th>9wk</th>
<th>14wk</th>
<th>9mos</th>
<th>12mos</th>
<th>15mos</th>
<th>18mos</th>
<th>24mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.2</td>
<td>5.2</td>
<td>7.6</td>
<td>8.5</td>
<td>10.5</td>
<td>11.1</td>
<td>11.9</td>
<td>13.4</td>
<td>15.0</td>
</tr>
<tr>
<td>Extended NVP</td>
<td>0.1</td>
<td>1.6</td>
<td>2.4</td>
<td>2.6</td>
<td>4.0</td>
<td>5.0</td>
<td>6.3</td>
<td>7.4</td>
<td>9.5</td>
</tr>
<tr>
<td>Extended NVP+ZDV</td>
<td>0.1</td>
<td>1.4</td>
<td>2.0</td>
<td>2.5</td>
<td>4.9</td>
<td>6.0</td>
<td>7.3</td>
<td>8.1</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Probability of Death in Infants Uninfected at Birth by Treatment Arm

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Probability of HIV-1 Infection or Death in Infants Uninfected at Birth by Treatment Arm

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria

<table>
<thead>
<tr>
<th>Age</th>
<th>Control</th>
<th>Extended NVP</th>
<th>Extended NVP+ZDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 wk</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>6 wks</td>
<td>6.8</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>9 wks</td>
<td>9.6</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>14 wks</td>
<td>10.8</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>6 mos</td>
<td>13.6</td>
<td>6.6</td>
<td>7.8</td>
</tr>
<tr>
<td>9 mos</td>
<td>16.9</td>
<td>10.1</td>
<td>10.6</td>
</tr>
<tr>
<td>12 mos</td>
<td>18.4</td>
<td>12.9</td>
<td>13.9</td>
</tr>
<tr>
<td>15 mos</td>
<td>21.3</td>
<td>15.3</td>
<td>15.8</td>
</tr>
<tr>
<td>18 mos</td>
<td>23.3</td>
<td>17.9</td>
<td>17.7</td>
</tr>
<tr>
<td>24 mos</td>
<td>24.7</td>
<td>19.8</td>
<td>19.9</td>
</tr>
</tbody>
</table>
Protective Efficacy: Extended Treatment Arms vs. Control Arm

Extended Prophylaxis Stopped

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Risk Factors for HIV-1 Infection

Proportional Hazards Model

Risk factors for HIV infection

<table>
<thead>
<tr>
<th>Risk factors for HIV infection</th>
<th>Adjusted HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment arms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended NVP vs. Control</td>
<td>0.60 (0.46, 0.78)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Extended NVP+ZDV vs. Control</td>
<td>0.65 (0.50, 0.85)</td>
<td>0.002</td>
</tr>
<tr>
<td>Maternal CD4 counts</td>
<td>1.22 (1.16, 1.29)</td>
<td><.0001</td>
</tr>
<tr>
<td>(Decrease of 100 units)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal Presentation</td>
<td>1.27 (1.00, 1.60)</td>
<td>0.05</td>
</tr>
<tr>
<td>(late vs. early)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant's gender</td>
<td>0.90 (0.72, 1.13)</td>
<td>0.37</td>
</tr>
<tr>
<td>(female vs. male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant's birth weight (Kg)</td>
<td>0.82 (0.64, 1.05)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Risk Factors for HIV-1 Infection or Mortality Proportional Hazards Model

<table>
<thead>
<tr>
<th>Risk factors for HIV infection or mortality</th>
<th>Adjusted HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment arms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended NVP vs. Control</td>
<td>0.71 (0.58, 0.87)</td>
<td>0.001</td>
</tr>
<tr>
<td>Extended NVP+ZDV vs. Control</td>
<td>0.73 (0.60, 0.90)</td>
<td>0.003</td>
</tr>
<tr>
<td>Maternal CD4 counts (Decrease of 100 units)</td>
<td>1.14 (1.10, 1.18)</td>
<td><.0001</td>
</tr>
<tr>
<td>Maternal Presentation (late vs. early)</td>
<td>1.09 (0.91, 1.30)</td>
<td>0.35</td>
</tr>
<tr>
<td>Infant's gender (female vs. male)</td>
<td>1.01 (0.85, 1.19)</td>
<td>0.94</td>
</tr>
<tr>
<td>Infant's birth weight (Kg)</td>
<td>0.63 (0.52, 0.76)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Serious Adverse Events by Treatment Arm

<table>
<thead>
<tr>
<th>Relatedness to Study Treatment</th>
<th>Control N(^1) (n(^2))</th>
<th>Extended NVP N(^1) (n(^2))</th>
<th>Extended NVP+ZDV N(^1) (n(^2))</th>
<th>P-value (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not related</td>
<td>374 (555)</td>
<td>402 (571)</td>
<td>379 (573)</td>
<td>.68</td>
</tr>
<tr>
<td>Possibly related</td>
<td>42 (44)</td>
<td>46 (47)</td>
<td>73 (78)</td>
<td>.01</td>
</tr>
<tr>
<td>Probably related</td>
<td>3 (3)</td>
<td>6 (6)</td>
<td>8 (8)</td>
<td>.38</td>
</tr>
<tr>
<td>Total</td>
<td>395 (602)</td>
<td>435 (624)</td>
<td>429 (659)</td>
<td>.80</td>
</tr>
</tbody>
</table>

1. Number of infants with at least one event in category.
2. Total number of events in category.
3. P-value based on Exact Test.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Conclusions

- Extended prophylaxis with NVP or NVP+ZDV is safe compared to control arm.

- Extended infant prophylaxis for 14 weeks reduces HIV-1 transmission and improves HIV-1-free survival in breastfed infants.

- Previously reported efficacy of the extended regimens is maintained.

- The protective efficacy of NVP is >70% during the intervention (during the period of prophylaxis up to 14 wks), 55% at 9 mos, 47% at 12 mos and decreases to 31% at 24 mos; longer prophylaxis therefore needed for HIV exposed infants who continue breastfeeding.

- No difference between extended NVP and NVP+ZDV.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria
Acknowledgments

- **Funding source:** This study was supported by a Cooperative Agreement (# 5 U50 PS022061-05; Award # U50/CC0222061) from the Centers for Disease Control and Prevention and the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health.

- We are indebted to the mothers and children who participated in the PEPI-Malawi study. We are grateful to the nursing and technical staff in Malawi and to several scientists in both the US and Malawi for their excellent collaboration and help throughout this study.

Presented at the 2nd International Workshop on HIV Pediatrics
16-17 July 2010, Vienna Austria