A Battle of Host vs Virus:
HIV-1 Vif adaptation to host immune pressure mediated by diverse cytidine deaminases

Nicole Reddy
Africa Health Research Institute (AHRI)
HIV Transmission Workshop 2017
22 July 2017
APOBEC3 proteins: an intrinsic block to HIV

Producer Cell

- Replication can occur
- HIV-1 Vif
- APOBEC3G

Target Cell

- Reverse Transcription
 - mutations
- Viral replication disabled

HIV-1 RNA
N-terminal region of Vif binds to APOBEC3 proteins

Vif residues responsible for binding to different APOBEC proteins
Goal and Hypothesis

Goal: To understand which APOBEC3 protein mediates immune pressure on the virus *in vivo*.

Hypothesis: HIV-1 Vif will adapt to the APOBEC3 protein that exerts immune pressure on the virus *in vivo*.
Vif variants were tested at acute infection (2-4 weeks post infection) and at one year post infection.

- HPP Acute Infection Cohort
- FRESH Cohort

Peak Viremia

Acute infections Identified
- Antibody negative
- RNA positive

Time Post Infection

2-4 weeks post infection (Baseline)

Acute Phase

Chronic Phase

One year post infection

n = 31
Vif variants were subtype C, limited intrapatient diversity

Baseline

One year post infection

n = 80 clones from 25 patients

Patients sequenced at baseline and one year post infection = 17
Minimal amino acid changes from baseline to one year post infection

<table>
<thead>
<tr>
<th>Amino Acid position</th>
<th>Ref</th>
<th>Baseline or Transmitter/Founder clone</th>
<th>One year clone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 458</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 919</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 1034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 1037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 186</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A3G binding sites in HIV-1 Vif are highly conserved
A3H binding sites in HIV-1 Vif are highly conserved
A3F binding sites in HIV-1 Vif are highly conserved
Transmitted/founder virus Vif degrades APOBEC3 proteins and rescues infectivity
Transmitted/founder virus Vif preferentially degrades APOBEC3G
Evidence that HIV1-Vif acquires ability to degrade A3F as disease progresses

- Overall there are no significant changes in patient derived Vifs to degrade different A3 proteins.
- However after one year post infection there is trend for increased A3F degradation.
Conclusions

• A3 binding sites on Vif were highly conserved with some variability observed

• Vif shows significant heterogeneity in its ability to degrade different A3 proteins

• Transmitter/founder virus Vif preferentially degrades A3G

• However, the ability of HIV-1 Vif to degrade A3F increases at one year post infection compared to T/F Vif
Acknowledgements

- **AHRI – Ndung’u Lab**
 - Prof Thumbi Ndung’u
 - Dr. Kavidha Reddy
 - Dr. Kamini Gounder
 - Ndung’u Lab Members

- **HPP**
 - Staff
 - FRESH and Acute Cohort Participants

- **Mount Sinai School of Medicine – Simon Lab**
 - Prof Viviana Simon
 - Dr. Marcel Ooms

- **Dr. Duran Ramsuran**