Trafficking of HIV out of the mucosa

Role for Integrin α₄β₇⁺ in HIV and SIV Transmission and Pathogenesis?

Claudia Cicala, Ph.D.

Laboratory of Immunoregulation
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Bethesda, MD - USA
Integrin $\alpha_4\beta_7$: gut homing receptor

- $\alpha_4\beta_7$ is a cell-surface receptor expressed on T, B and NK cells. (GALT)
- $\alpha_4\beta_7$ binds to MAdCAM, an adhesion receptor that is primarily expressed on HEV’s in GALT.
- The tissue-specific expression of MAdCAM in GALT defines $\alpha_4\beta_7$ as the gut-homing receptor
Susceptibility of the GI Tract to SIV and HIV

Gastrointestinal Tract as a Major Site of CD4+ T Cell Depletion and Viral Replication in SIV Infection

Ronald S. Veazey, MaryAnn DeMaria, Laura V. Chalifoux, Diniel E. Shvetz, Douglas R. Pauley, Heather L. Knight, Michael Rosenzweig, R. Paul Johnson, Ronald C. Desrosiers, Andrew A. Lackner*

Journal of Virology, Nov. 2003, p. 11708-11717
0022-538X/03/$08.00+0 DOI: 10.1128/JVI,77,21.11708-11717,2003
Copyright © 2003, American Society for Microbiology. All Rights Reserved.

Severe CD4+ T-Cell Depletion in Gut Lymphoid Tissue during Primary Human Immunodeficiency Virus Type 1 Infection and Substantial Delay in Restoration following Highly Active Antiretroviral Therapy

Moraima Guadalupe,1 Elizabeth Reay,1 Sumathi Sankaran,1 Thomas Prindiville,2 Jason Flamm,3 Andrew McNeil,2,4 and Satya Dandekar1,2*

Primary HIV-1 Infection Is Associated with Preferential Depletion of CD4+ T Lymphocytes from Effector Sites in the Gastrointestinal Tract

Saurabh Mehandru,1 Michael A. Poles,1,2 Klara Tenner-Racz,3 Amir Horowitz,1,2 Arlene Hurley,1 Christine Hogan,1 Daniel Boden,1 Paul Racz,2 and Martin Markowitz1

Nature Reviews | Immunology
Persistent Depletion of CD4+ T cells in the GI Tract Despite Normalization in the Peripheral Blood in ART-treated Patients

Primary HIV-1 Infection Is Associated with Preferential Depletion of CD4+ T Lymphocytes from Effector Sites in the Gastrointestinal Tract

Saurabh Mehandru,1 Michael A. Poles,1,2 Klara Tenner-Racz,3
Amir Horowitz,1,2 Arlene Hurley,1 Christine Hogan,1 Daniel Boden,1
Paul Racz,3 and Martin Markowitz1

Mechanisms of Gastrointestinal CD4+ T-Cell Depletion during Acute and Early Human Immunodeficiency Virus Type 1 Infection

Saurabh Mehandru,1 Michael A. Poles,1,2 Klara Tenner-Racz,3 Victoria Manuelli,1 Patrick Jean-Pierre,1
Peter Lopez,1 Anita Shet,1 Andrea Low,1 Hiroshi Mohri,1 Daniel Boden,1
Paul Racz,3 and Martin Markowitz1

Lack of Mucosal Immune Reconstitution during Prolonged Treatment of Acute and Early HIV-1 Infection

Saurabh Mehandru1, Michael A. Poles1,2, Klara Tenner-Racz3, Patrick Jean-Pierre1, Victoria Manuelli1, Peter Lopez1,
Anita Shet1, Andrea Low1, Hiroshi Mohri1, Daniel Boden1, Paul Racz3, Martin Markowitz1

- CD4+ T cells are preferentially depleted in the GI tract in acute and early HIV-1 infection
- GI CD4+ T cells harbor a higher viral burden compared to peripheral blood CD4+ T cells
- Lack of reconstitution in GI derived CD4+ T cells during prolonged ART in the majority of patients
The GI tract is preferentially targeted during acute/early HIV-1 and SIV infections with consequent damage to the gut.

In the majority of patients, long term antiretroviral therapy does not efficiently reconstitute mucosal CD4\(^+\) T cells.
Integrin $\alpha_4\beta_7$ and HIV Infection

HIV-1 envelope protein binds to and signals through integrin $\alpha_4\beta_7$, the gut mucosal homing receptor for peripheral T cells

Integrin $\alpha_4\beta_7$ is the gut-homing receptor
The integrin $\alpha_4\beta_7$ forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1

Claudia Cicalaa,1,2, Elena Martinellia,1, Johnathan P. McNallya, Diana J. Goodea, Ravindra Gopaula, Joseph Hiatta, Katija Jelicicc, Shyamasundaran Kottillilb, Katilyn Macleodb, Angeline O'Sheaa, Nikita Patelb, Donald Van Ryka, Danian Weia, Massimiliano Pascuccioa, Ling Yib, Lyle McKinnonc, Preson Izullad, Joshua Kimanid, Rupert Kaufc, Anthony S. Faucia,2, and James Arthosa

aLaboratory of Immunoregulation and bLaboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; cDepartment of Medicine, University of Toronto, Toronto, Canada M5S 1A8; and dDepartment of Medical Microbiology, University of Nairobi, P.O. Box 30197-00100, Kenya

$\alpha_4\beta_7^+/CD4^+$ T cells define a subset of CD4$^+$ T cells that are metabolically active, Ki67$^+$, CCR5$^{\text{high}}$, CXCR4$^{\text{low}}$.

$\alpha_4\beta_7^+/CD4^+$ T cells appear in the gut and genital mucosa.
Memory Peripheral and Genital Tract $\alpha_4\beta_7^{\text{high}}$ Memory CD4$^+$ T Cells Express CCR5 and are Highly Activated.

- Naïve CD4$^+$ T cells express an intermediate level of $\alpha_4\beta_7$
- Memory CD4$^+$ T cells express high levels of $\alpha_4\beta_7$: $\alpha_4\beta_7^{\text{high}}$ CD4$^+$ T cells
Preferential depletion of $\alpha_4\beta_7^{\text{high}}$ CD4$^+$ T cells

- intracellular p24 staining of CD4$^+$ T cells, day 3, 6, 8, post infection
Result: the overall rate of HIV transmission observed in these discordant couples: 0.0012/coital act.
Potential barriers to HIV transmission across the genital mucosa.

“The entering viruses must interact with susceptible CD4+ CCR5+ T cells to propagate since entry into non permissive resting CD4+ T cells will result in nonproductive infection”

Monaco et al. (2017) Current Topics in Microbiology and Immunology
$\alpha_4\beta_7^+/\text{CD}4^+$ T Cells are a Prime Target for Productive Infection in Mucosal Tissues
Characterization of a Human Cervical CD4⁺ T Cell Subset Coexpressing Multiple Markers of HIV Susceptibility

Lyle R. McKinnon,*,† Billy Nyanga,†,1 Duncan Chege,*,† Preston Izulla,† Makobu Kimani,† Sanja Huibner,⁎ Lawrence Gelmon,†,‡ Katharine E. Block,§ Claudia Cicala,§ A. Omu Anzala,†,§ James Arthos,§ Joshua Kimani,†,‡ and Rupert Kaul⁎,†,II

The Journal of Immunology, 2011, 187

Cervical Cytobrush CD4 T Cells:
Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques

Daniel J. Stieh, Edgar Matias, Huanbin Xu, Angela J. Fought, James L. Blanchard, Preston A. Marx, Ronald S. Veazey, Thomas J. Hope
HSV2 Infection upregulates $\alpha_4\beta_7$ on the surface of $CD4^+ T$ cells.

Martinelli et al. PLoS Path 2011

Epithelium

HSV-2

HIV-1

CXCL10? IL7?

$\alpha_4\beta_7$?

RA?

R>1

% $\alpha_4\beta_7^+/CD4^+ T$ cells

p < 0.001

HSV-2 Negative

HSV-2 Positive

Gut and MLN

0 10 20 30 40

0

α₄β⁷⁺/CD4⁺ T Cells are Targeted in Acute Infection

- Blood. 2001 Nov;98(10): 3169-3171
 - Preferential and persistent depletion of CCR5⁺ T-helper lymphocytes with nonlymphoid homing potential despite early treatment of primary infection

 - Monitoring α₄β₇ integrin expression on circulating CD4⁺ T cells as a surrogate marker for tracking intestinal CD4⁺ T-cell loss in SIV infection
 - X Wang, H Xu, AF Gill, B Pahar, D Kempf, T Rasmussen, AA Lackner and RS Veazey.

 - Blocking of Gut-Homing Integrin during Acute Infection Leads to Decreased Plasma and Gastrointestinal Tissue Viral Loads in Simian Immunodeficiency Virus-Infected Rhesus Macaques
The Frequency of $\alpha_4\beta_7^{\text{hi}}$ Memory CD4$^+$ T Cells is Directly Correlated with Risk of Acquisition in Rhesus Macaques

The Frequency of $\alpha_4\beta_7^{\text{hi}}$ Memory CD4$^+$ T Cells Correlates With Susceptibility to Rectal Simian Immunodeficiency Virus Infection

Elena Martinelli, PhD, MPH,* Filippo Veglia, PhD,* Diana Goode, PhD,* Natalia Guerra-Perez, PhD,* Meropi Aravantinou, MS,* James Arthos, PhD,‡ Michael Piatak, Jr., DMV, PhD,‡ Jeffery D. Lifson, MD,‡ James Blanchard, PhD,§ Agegnehu Gettie, BS,II and Melissa Robbiani, PhD*

J Acquir Immune Defic Syndr. 2013

Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition

Monica Vaccari¹,², Shari N Gordon¹,², Slim Fourati²,², Luca Schifanella¹,³,², Namal P M Livanage¹,²,³ & Genoveffa Franchini¹,²,³

2016 NATURE MEDICINE

R = −0.62
P = 0.02

Number of IR Challenges

% of $\alpha_4\beta_7^{\text{hi}}$ Ki67$^+$ CD4$^+$ T Cells
Effect of ART on Colonic $\alpha_4\beta_7^{hi}$ CD4$^+$ T Cells

- Colonic $\alpha_4\beta_7^{hi}$ CD4$^+$ T cells are not replenished, even after ART treatment initiated in Fiebig I

CCR5$^+$ CD4$^+$ T cells

$\alpha_4\beta_7^{hi}$ CD4$^+$ T cells
Can Targeting $\alpha_4\beta_7^+$ T cells have an effect on SIV/HIV transmission?
Rhesus Anti-$\alpha_4\beta_7$ Antibody (mAb Act1)

Vedolizumab as Induction and Maintenance Therapy for Crohn's Disease

William J. Sandborn, M.D., Brian G. Feagan, M.D., Paul Rutgeerts, M.D., Ph.D., Stephen Hanauer, M.D., Jean-Frédéric Colombel, M.D., Bruce E. Sands, M.D., Milan Lukas, M.D., Ph.D., Richard N. Fedorak, M.D., Scott Lee, M.D., Brian Bressler, M.D., Irving Fox, M.D., Maria Rosario, Ph.D., Serap Sankoh, Ph.D., Jing Xu, Ph.D., Kristin Stephens, B.A., Catherine Milch, M.D., and Asit Parikh, M.D., Ph.D., for the GEMINI 2 Study Group

Vedolizumab is a human analogue of mAb Act1
Targeting $\alpha_4\beta_7$ integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection

Siddappa N Byrareddy1,8, Brianne Kallam1,8, James Arthos2, Claudia Cicala2, Fatima Nawaz2, Joseph Hiatt2, Ellen N Kersh3, Janet M McNicholl3, Debra Hanson3, Keith A Reimann4, Markus Brameier5, Lutz Walter5, Kenneth Rogers6, Ann E Mayne7, Paul Dunbar1, Tara Villinger1, Dawn Little1, Tristram G Parslow1, Philip J Santangelo7, Francois Villinger1,6, Anthony S Fauci2 & Aftab A Ansari$^1
Low-Dose Challenge Study Design

- **α4α7 mAb monkeys**
- **Viral challenges**
- **Intravaginal infection**
- **mAb monkeys**
- **control mAb monkeys**
\(\alpha_4\beta_7 \) mAb prevents and delays mucosal transmission of SIV

Significant protection

Pronounced delay in viremia

\[P = 0.002 \]
Individual Plasma Viremia Levels in NHPs Receiving Either $\alpha_4\beta_7$ mAb or Control IgG During Mucosal Challenge with SIVmac251

Anti-$\alpha_4\beta_7^+$ Antibody

- 6/12 infected

IgG Control

- 10/12 infected

Log plasma viral RNA (copies/ml)

Time after Initial SIVmac251 Challenge (weeks)
α₄β₇ mAb Protects the Gut

pro-viral DNA levels in gastro-intestinal tissue biopsies

anti- α₄β₇ treated/infected

IgG treated/infected

<table>
<thead>
<tr>
<th>RCw11</th>
<th>RDg11</th>
<th>Rlz12</th>
<th>ROC11</th>
<th>RRc9</th>
<th>RQm11</th>
</tr>
</thead>
</table>

| RBs9 | REo8 | RHy12 | RHy12 | RKs11 | RLc12 | RRn11 | RVw10 | RWt9 | RZz10 | RCd12 |

- Viral DNA (copies/ng)
- Time after initial SIVmac251 challenge (weeks)
Anti $\alpha_4\beta_7$ Minimizes Loss of Both Memory and Naïve CD4$^+$ T Cells in the Peripheral Blood

![Graphs comparing CD4+ T cell counts across different conditions](image-url)

- **CD4$^+$ T cells (total)**
 - P < 0.001

- **Naïve CD4$^+$ T cells**
 - P = 0.04

- **Central memory CD4$^+$ T cells**
 - P = 0.58

- **Effector memory CD4$^+$ T cells**
 - P = 0.02

Legend:
- Uninfected RMs
- Anti-$\alpha_4\beta_7$ treated infected RMs
- IgG treated infected RMs
Protection of gut tissue preserves peripheral CD4⁺ T cells
Immuno-PET/CT Interrogation of SIV Infected Macaques

Probes

1. 64Cu-labeled anti-CD4 F(ab’)$_2$

2. 64Cu-labeled anti-gp120
Immuno-PET/CT Interrogation of SIV Infected Macaques

$\alpha_4\beta_7$ mAb treatment reduced virus in gut, but also in other lymphoid tissues.

Probe 64Cu-labeled anti-gp120
3 weeks post-infection
Conclusions

1. A primatized monoclonal IgG antibody directed against $\alpha_4\beta_7$ reduces the efficiency of vaginal transmission of SIV in rhesus macaques.

2. $\alpha_4\beta_7^{\text{high}}$CD4$^+$ T cells that reside in, or traffic to, the gut-associated lymphoid tissues (GALT) play a key role in SIV transmission.

3. In macaques that do become infected in the presence of an $\alpha_4\beta_7$ mAb, viremia is delayed and GALT is protected in a significant way.
Can Targeting $\alpha_4\beta_7$ T cells change the pathogenesis of SIV/HIV infection?
Sustained virologic control in SIV+ macaques after antiretroviral and a4b7 antibody therapy

Siddappa N. Byrareddy,1,4† James Arthos,2* Claudia Cicala,2* Francois Villinger,1,3‡ Kristina T. Ortiz,1 Dawn Little,1 Neil Sidell,1 Maureen A. Kane,5 Jianshi Yu,1 Jace W. Jones,5 Philip J. Santangelo,6 Chiara Zurla,6 Lyle R. McKinnon,7§ Kelly B. Arnold,6 Caroline E. Woody,6 Lutz Walter,6 Christian Roos,6 Angela Noll,9 Donald Van Ryk,2 Katija Jelicic,2 Raffaele Cimbro,10 Sanjeev Gumber,3 Michelle D. Reid,1 Volkan Adsay,1 Praveen K. Amancha,3 Ann E. Mayne,1 Tristram G. Parslow,1 Anthony S. Fauci,2 Aftab A. Ansari1†
Schema of Experimental Design ART + anti-α₄β₇ Study

anti-α₄β₇ Treated Group (n=11)
- ART administered daily for 3 months
- SIVmac239 (200TCID₅₀)
- ART administration terminated
- Baseline collections
- PMPA (20mg/kg/day) SubQ
- FTC (50mg/kg/day) SubQ
- Integrase inhibitor L-870812 (100mg/kg/day) Oral

anti-IgG Treated Group (n=7)
- ART
- α₄β₇ or IgG (50mg/kg)
- Administration initiated
- α₄β₇ or IgG Administration terminated
Combining ART with anti-\(\alpha_4\beta_7\) Promotes Virologic Control in SIV Infected Macaques

SIVmac239 (200TCID\(_{50}\))

ART administered daily for 3 months

PMPA (20mg/kg/day) SubQ
FTC (50mg/kg/day) SubQ
Integrase inhibitor L-870812 (100mg/kg/day) Oral

Baseline collections

Log Plasma Viral RNA (copies/ml)

(Geometric mean)

Pro-viral DNA levels in gastro-intestinal tissue biopsies (copies/ng DNA)

Weeks

Phase I Phase II Phase III Phase IV Phase V

ART**

\(\alpha_4\beta_7\)

\(\text{IgG}\)

\(\alpha_4\beta_7\) or IgG

Phase I Phase II Phase III Phase IV Phase V

ART**
ART + anti-α₄β₇ Treatment Promotes the Restoration of CD4⁺ T Cells in SIV Infected Macaques

Blood CD4 counts indicate absolute cell numbers.
Gut CD4 frequencies based on gated population of CD45⁺ cells.
ART + $\alpha_4\beta_7$ mAb Promotes Durable Preservation of CD4$^+$ cells in Gut and Lymphoid Tissues

CD4$^+$ Cell PET imaging of animals treated with combination ART + $\alpha_4\beta_7$ mAb

week 50

Rld14 ($\alpha_4\beta_7$ mAb) Rlt11 (IgG)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>SUVmax Rld14</th>
<th>SUVmax Rlt11</th>
</tr>
</thead>
<tbody>
<tr>
<td>NALT and Facial Cranial LN</td>
<td>0.50</td>
<td>0.10</td>
</tr>
<tr>
<td>Axillary LN</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>Gastrointestinal Tract</td>
<td>1.50</td>
<td>0.20</td>
</tr>
<tr>
<td>Inguinal LN</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Spleen</td>
<td>3.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

SUVmean

- Spleen: $\alpha_4\beta_7$ mAb > IgG
- Muscle: $\alpha_4\beta_7$ mAb < IgG
Durable Control of Viremia and Durable Preservation of CD4 cells in ART + $\alpha_4\beta_7$ mAb treated Macaques

Log plasma viral RNA (copies/ml)

- **ART + IgG**
- **ART + $\alpha_4\beta_7$ mAb**

Immuno-histological evaluation of CD4+ T cells in GIT biopsy specimens
Combination ART + $\alpha_4\beta_7$ mAb reduces gut viral load over ART alone during the dual-therapy (aviremic) phase.

SIV gp120 PET imaging
$\alpha_4\beta_7^+/\text{CD}4^+ \text{ T Cells are a Prime Target for Productive Infection in Mucosal Tissues}$
Acknowledgements

EMORY UNIV.
ANN E. MAYNE
DAWN LITTLE
KRISTINA ORTIZ
NEIL SIDELL
A. A. ANSARI

UNIV OF NEBRASKA
SIDDAPPA BYRAREDDY

GERMAN PRIMATE CTR
LUTZ WALTER
CHRISTIAN ROOS
ANGELA NOLL

DEPT PATH EMORY UNIV
TRISTRAM G. PARSLOW
MICHELLE D. REID
VOLKAN ADSAY

UNIV OF TORONTO
RUPERT KAUL

NIAID
CLAUDIA CICALA
DONALD VAN RYK
KATIJA JELICIC
 DANLAN WEI
ANTHONY S. FAUCI

GEORGIA TECH
PHILIP SANTANGELO
CHIARA ZURLA

UNIV. OF MICHIGAN
KELLY B. ARNOLD
CAROLINE E. WOODY

UNIV OF MANITOBA
LYLE R. MCKINNON
AIDA SIVRO

JOHNS HOPKINS UNIV
RAFFAELLO CIMBRO

NEW IBERIA RESEARCH CENTER
FRANCOIS VILLINGER

YERKES PRIMATE CTR
PRAVEEN K. AMANCHA
SANJEEV GUMBER

UNIV. OF MARYLAND
MAUREEN KANE
JIANSHI YU
JACE W. JONES

MHRP
MERLIN ROBB
JINTANAT ANAWORANICH
SHELLY KREBS

MHRP-AFRIMS
ALEXANDRA SCHUETZ

CAPRISA
LYLE MCKINNON
QUARRAISHA ABDOOL KARIM
SALIM ABDOOL KARIM
JO-ANN PASSMORE