Viral reservoirs and insights for HIV cure in adults and children

Thumbi Ndung’u, BVM, PhD
Africa Health Research Institute (AHRI) and HIV Pathogenesis Programme (HPP), Doris Duke Medical Research Institute
Nelson R. Mandela School of Medicine
University of KwaZulu-Natal

11th INTEREST Workshop, Lilongwe, Malawi, 16-19 May 2017
Disclosures

• My research is partially funded by Gilead Sciences, Inc., an antiretroviral drug manufacturer

• I have no other potential conflicts of interest
Outline

• Background on cure research

• The FRESH cohort- a unique cohort to address gaps in HIV prevention, pathogenesis and cure research

• Impact of treatment during hyperacute HIV infection on virologic and immunologic factors

• Conclusions and implications for HIV cure research in resource-limited settings
Barriers to a cure

- Lifelong treatment is probably unsustainable
- People of ART who are fully suppressed have lower life expectancy
- cART use is associated with significant morbidity

Barriers to cure: latently infected T-cells

HIV Viral load

HAART
Barriers to cure: residual viral replication

HIV Viral load

HAART

HAART
Barriers to cure: anatomical reservoirs
Strategies for cure

• Eliminate latently infected cells

• Make cells “resistant” to HIV

• Optimise HAART
 – Intensification
 – Early treatment
HIV remission is rare but possible

ART started early in infection

- Mississippi child 28 months
- Visconti, French Teenager
- Timothy Brown

Can study of acute HIV-1 infection be a pathway to cure?

Key questions:
- Characteristics of the transmitted/founder virus?
- Immune responses in acute HIV-1 infection- why do they fail? What is the impact of T/F virus? Impact on reservoir? Impact of early treatment?
- Can we mimic effective immune responses or augment ineffective immune responses for better vaccines or cure?

Viral set point is a predictor for:
- Rate of disease progression
- Risk of transmission
FRESH study cohort

- **FRESH**: Females Rising through Education, Support and Health
- Recruit women 18 to 23 at very high risk of HIV infection
 - Provide an intensive empowerment, life-skills and job readiness curriculum that coincides with the sample collection protocol.
- Empowerment and training program coincides with twice per week HIV RNA testing for 9 months. Serial pre-and post-infection samples (blood, FGT and lymph nodes) are collected.
- Study host and viral factors associated with acquisition and disease progression- T/F virus, antiviral immune mechanisms.
Acute infections detected (N = 54)

As of May 10, 2017:

- 14 untreated, 11/14 (79%) Fiebig I
- 40 treated early, 32/40 (84.2%) Fiebig I
- **Incidence 8.2** (95% CI=5.8-12.0) per 100 p/y
Typical treated and untreated acute HIV-1 infection

FRESH Acute 1

FRESH Rx Patient 1

Treatment: TDF/FTC/EFZ
Raltegravir intensification reduces time to full suppression

- Untreated (n=13)
- Early ART (n=8)
- Early ART + RAL (n=15)

Median HIV RNA log_{10} copies/ml

- Sampling timepoints after detection of HIV-RNA

- Early ART

\[p < 0.0177 \]
Early ART blunts peak viremia in Fiebig I treated patients.
Early cART in Fiebig I preserves CD4 T cells
Participants treated in Fiebig stage I do not seroconvert*

*WB- Biorad GS kit
Markers of reservoirs and latency

Forms of intracellular HIV DNA

1. Non-integrated linear DNA
2. Integrated provirus
3. 2-LTR circles
4. DNA sequencing
5. p24 antigen
HIV persistence measurements

Proteinase K cell lysate: ACH-2, PBMCs

Pre-amplification from cell lysate

Single well pre-amplification of HIV and CD3

Frequency of cells harbouring HIV DNA

HIV copy number

2 X CD3 copy number

TaqMan Probes
(sensitivity: 1 HIV DNA copy)

Real-time nested PCR of pre-amplified products

Total HIV DNA

Integrated HIV DNA

HIV CD3

Real-time nested PCR of pre-amplified products

adapted from Vandergeeten et. al., 2014, JVI
Early establishment but steady decay of the reservoir in early treated participants

527 (Fiebig stage I treated) SK-141 (chronically infected patient)

Reservoir measurements according to Vandergeeten et al, 2014, JVI
Higher total DNA reservoir in Fiebig stage I compared to chronically infected untreated patients
Total HIV DNA correlates with peak viral load

- Total HIV DNA (log copies/10^6 cells)
- Viral Load (log copies/ml)

p=0.0012, r=0.942
Reduced but still detectable viral reservoir at 52 weeks for Fiebig I treated participants.
A list of all HIV DNA sequences detected in FRESH (n=4)

Patient 1

Days post-detection
10
46
161
165

Patient 2

Days post-detection
2
42
164

Patient 3

Days post-detection
7
42
164

Patient 4

Days post-detection
18
42
161
332
Longitudinal monitoring of HIV reservoir size in FRESH patients

Treatment initiated immediately post-detection

No treatment
HIV Gag p24 detectable in early treated fully suppressed subjects

HIV+ Chronic HIV+ ET HIV Negative

Gag-p24: Brown Nucleus: Blue
p24+ cells co-localize with BCL6+ cells in the germinal centers

PID: 053 (127-33-0942-683)
Early Tx
Age: 19
VL: <20 cps/ml
Conclusions

- Acute HIV infections- novel insights into characteristics of T/F virus, immune responses and reservoir establishment mechanisms for vaccine and functional cure strategies

- FRESH study participants initiated on cART may have higher quality CTL immune responses but reservoir is established very early, decays slowly

- Understanding of T/F viruses, immune responses and reservoirs following may be useful for future intervention studies

- Suitable platform for future interventions aimed at cure?
Acknowledgements

K/RITH and HPP- UKZN
• Krista Dong
• Amber Moodley
• Zaza Ndhlovu
• Bongiwe Ndlovu
• Kavidha Reddy
• Jenn Maroa
• Kamini Gounder
• Daniel Muema
• Omolara Baiyegunhi
• Nasreen Ismael
• FRESH study participants
• FRESH study team

Harvard/MGH
• Bruce Walker
• Mathias Lichterfeld
• Guinevere Lee
• Douglas Kwon
• Musie Ghebremichael

Funding
• Bill and Melinda Gates Foundation
• IAVI
• NIH
• South African DST/NRF
• HHMI
• Gilead Sciences, Inc.