Growth evolution and stunting among HIV-infected adolescents in the multiregional IeDEA cohort consortium

Julie Jesson, Michael Schomaker, Karen Malaste, Dewi Kumara Wati, Azar Kariminia, Mariam Sylla, Kouakou Kouadio, Shobna Sawry, Mike Vinikoor, Mary-Ann Davies, Valériane Leroy, on behalf of the IeDEA global consortium

9th HIV Pediatrics
21st July 2017
Conflicts of interest

• Nothing to disclose
Growth and nutrition during adolescence

- 10-19 years = 2nd period of growth during life, highest energetic needs
- High burden of stunting (>50% in some developing countries)
- “Adolescents are a neglected group in terms of Nutrition” (Save the children)
- Among HIV-infected adolescents, few estimates available, no specific nutritional recommendations

- Delayed pubertal development associated with stunting (Height-for-age Z-score (HAZ) <-2)

Pubertal staging, Tanner scale

One unit lower pre-ART HAZ delayed age on reaching each stage

\textit{Szubert et al., AIDS 2013}
Objective and choice of study population

• To assess the prevalence of stunting among HIV-infected adolescents and explore growth trajectories

• Need to assess growth separately by mode of transmission
 – Delayed puberty and growth retardation due to chronic disease may occur for perinatally-infected ++ compared to behaviourally-infected adolescents
 – Lack of documentation on mode of transmission - difficult to distinguish

=> Objective restricted to perinatally-infected adolescents as a first step
How to define HIV-transmission mode among adolescents?

• If transmission mode not documented, threshold of age often used as a proxy
 – Previous analyses (e.g. CIPHER global cohort) have assumed perinatal infection if children enter care <10 years of age.

• However, in our data, when mode of transmission was recorded
 – most adolescents entering care between 10-15 years old were documented as perinatally infected.

• Definition selected in our study (if transmission mode not documented):
 – Perinatal infection = children entered in care before 15 years of age
 – Behavioural infection = children entered in care after 15 years of age
Methods

• Study design and population
 – HIV-infected adolescents from the IeDEA consortium: multiregional collaboration including cohorts of patients routinely followed-up in clinical care centres worldwide

• Inclusion criteria
 – Enrolment at < 15 years of age from 2003 to 2016, considered as perinatally-infected
 – With height measurement available while aged 10-19 years old

• Stunting
 – Height-for-Age Z-score (HAZ) < -2 SD (WHO child growth standards)

• Curves
 – Stratified by gender
 – By age at ART initiation, immunodeficiency and stunting at ART initiation/ at 10 years
Total N=28,884
28 countries, 267 centers

Between 10 and 19y old:
Median follow-up time = 4.1y (IQR 2.0-6.5)
Median number of visits = 9 (IQR 3-19)
Descriptive results

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (N=28,884)</th>
<th>West Africa (N=2666)</th>
<th>Central Africa (N=1753)</th>
<th>Southern Africa (N=19,777)</th>
<th>Asia-Pacific (N=3521)</th>
<th>CCASAnet (N=1167)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perinatally infected* on the overall population, %</td>
<td>76</td>
<td>96</td>
<td>83</td>
<td>71</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>Girls, %</td>
<td>52</td>
<td>49</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>On ART, %</td>
<td>98</td>
<td>95</td>
<td>88</td>
<td>100</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Severe immunodeficiency for age† at 10y old, %</td>
<td>13</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Severe immunodeficiency for age at 15y old, %</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Stunting ‡ at 10y old, %</td>
<td>38</td>
<td>26</td>
<td>31</td>
<td>40</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>Stunting at 15y old, %</td>
<td>45</td>
<td>37</td>
<td>36</td>
<td>50</td>
<td>36</td>
<td>27</td>
</tr>
</tbody>
</table>

* Documented as perinatally-infected or if not, entered in care before 15 years of age
† Severe: CD4 count<250/ml, ‡ Stunting: Height-for-age Z-score < -2 SD
Evolution of growth for girls and boys

Girls

- **Height-for-age Z-score**
- **Height gains, cm/year**

Boys

- **Height-for-age Z-score**
- **Height gains, cm/year**

In black: Median height velocity according to 2000 CDC growth charts
Evolution of growth by age at ART initiation

Girls

Boys

HAZ

Age (years)

0-5 years old

5-10 years old

>10 years old
By stunting at ART initiation (top) / 10 years old (bottom)

- **No stunting** (HAZ>-2 SD)
- **Moderate stunting** (HAZ=[-3;-2] SD)
- **Severe stunting** (HAZ<-3 SD)

Girls

Boys

By CD4 count at ART initiation (top) / 10 y old (bottom)
Conclusions, synthesis of the results

• High prevalence of stunting among perinatally-infected adolescents (20 to 50%)

• Growth was greater for
 – those initiated early on ART,
 – those not stunted at ART initiation/10y
 – those not severely immunodeficient at 10y

• Growth trajectories differ between boys and girls
 – Could be explained by differences in pubertal delay and growth spurt
 – By age 19y, better Height-for-age Z-score for girls because growth spurt happened earlier than for boys
Conclusions, limits and perspectives

• Survival bias
 – Sicker, perinatally-infected children may have died before the age of 10
 – Healthier children, with a higher probability to survive until adulthood, could have better height gains

• Indication bias
 – Children could have entered care between 10 and 15 years because they are sick

• Next steps: modelling of growth during adolescence
 – Separately for perinatally and behaviourally mode of transmission
 – Separately for boys and girls, taking into account the inflection point observed on the growth trajectories
 – Identifying the start of growth spurt could help for further nutritional interventions targeting HIV-infected adolescents
Acknowledgments

• All adolescents enrolled in the IeDEA consortium
• All co-authors and investigators from the IeDEA regions
• Research team from the University of Cape Town, CIDER, South Africa
• Research team from the Universities of Bordeaux and Toulouse, France
• Mary-Ann Davies, Valériane Leroy, Michael Schomaker

• The International Epidemiology Databases to Evaluate AIDS (IeDEA) is supported by the U.S. National Institutes of Health’s National Institute of Allergy and Infectious Diseases, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Cancer Institute, the National Institute of Mental Health, and the National Institute on Drug Abuse: Asia-Pacific, U01AI069907; CCASAnet, U01AI069923; Central Africa, U01AI096299; East Africa, U01AI069911; NA-ACCORD, U01AI069918; Southern Africa, U01AI069924; West Africa, U01AI069919. This work is solely the responsibility of the authors and does not necessarily represent the official views of any of the governments or institutions mentioned above.