Evaluation of the Drug-Drug Interaction (DDI) Potential Between Cobicistat-Boosted Protease Inhibitors and Statins

Joseph M. Custodio, Steve K. West, Devi SenGupta, Arian Zari, Rita Humeniuk, Kah Hiing J. Ling, Moupali Das, Brian P. Kearney

Gilead Sciences, Inc., Foster City, CA

[Oral # 4]
Disclosures

♦ I am an employee of Gilead Sciences, Inc.
Cobicistat (COBI) is a mechanism-based CYP3A inhibitor and pharmacokinetic (PK) booster\(^1,2,3\)

- COBI is an inhibitor of CYP3A, CYP2D6, P-gp, BCRP, and OATP1B1/1B3

COBI approved for use with the HIV integrase strand transfer inhibitor elvitegravir (EVG) when given either as the single tablet regimen Stribild™ (EVG/COBI/emtricitabine [FTC]/tenofovir disoproxil fumarate) or Genvoya™ (EVG/COBI/FTC/tenofovir alafenamide)\(^1,2\)

COBI approved for use with the HIV protease inhibitors atazanavir (ATV) or darunavir (DRV)\(^3\)

- DRV inhibits CYP3A and P-gp\(^4\)
- ATV inhibits CYP3A, UGT1A1, P-gp, BCRP, and OATP1B1/1B3\(^5\)

Background

Statins

- HMG-CoA reductase inhibitors, rosuvastatin (ROS; Crestor®) and atorvastatin (ATOR; Lipitor®) are commonly prescribed to treat hypercholesterolemia in HIV-infected individuals\(^1,2\)
 - **ROS** is a substrate of drug transporters\(^1\)
 - **ATOR** is a substrate for drug transporters and drug-metabolizing enzymes\(^7\)

<table>
<thead>
<tr>
<th>DDI mechanism</th>
<th>ROS</th>
<th>ATOR</th>
<th>DRV+COBI</th>
<th>ATV+COBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug transporters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-gp/BCRP</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Inhibitor</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>OATP1B1/1B3</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Inhibitor</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>Drug-metabolizing enzymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP3A4</td>
<td>—</td>
<td>Substrate</td>
<td>Inhibitor</td>
<td>Inhibitor</td>
</tr>
</tbody>
</table>

- The risk of skeletal muscle adverse events (eg, myopathy) is increased during concomitant use of statins with strong CYP3A inhibitors\(^2,3\)

Aim

- **Primary**: To evaluate the effect of the COBI-boosted DRV (DRV + COBI) or COBI-boosted ATV (ATV + COBI) on the PK of ROS or ATOR.

- **Secondary**: To evaluate the safety and tolerability of administration of DRV + COBI or ATV + COBI when given alone or in combination with ROS or ATOR.
Study Design

- Randomized, fixed sequence, three periods, multiple cohort, open label, single center study in healthy subjects (n=16/cohort)
Methods

- Plasma concentrations determined using validated LC/MS-MS assays
- GMR, associated 90% CIs used to statistically compare exposures
- No effect boundaries were 70–143% for AUC and 50–200% for C_{max}

CI, confidence interval; GMR, geometric mean ratios; LC/MS-MS, liquid chromatography-tandem mass spectrometry.
Results: Enrollment and Demographics

<table>
<thead>
<tr>
<th></th>
<th>DRV+COBI+ROS n=16</th>
<th>DRV+COBI+ATOR n=16</th>
<th>ATV+COBI+ROS n=16</th>
<th>ATV+COBI+ATOR n=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Median age, y (range)</td>
<td>32 (18–45)</td>
<td>30 (19–43)</td>
<td>34 (21–45)</td>
<td>31 (20–44)</td>
</tr>
<tr>
<td>Mean weight, kg (SD)</td>
<td>78.8 (13.1)</td>
<td>81.7 (14.6)</td>
<td>80.1 (8.8)</td>
<td>79.3 (11.9)</td>
</tr>
<tr>
<td>Race/ethnicity, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Results: Safety

- All treatments were generally well tolerated
- All subjects completed the study
- The majority of adverse events (AEs) that were related to study drug were mild in severity; no Grade 3 or 4 AEs were observed
- The most frequently reported AEs were ocular icterus and hyperbilirubinemia in the ATV-containing cohorts
- Common AEs also included headache and gastrointestinal disorders irrespective of treatment
Coadministration increased ROS AUC∞ and Cmax, consistent with the inhibitory effect of DRV+COBI on P-gp/BCRP and/or OATP1B1/1B3.
Results: Cohort 2
Effect of DRV+COBI on **ATOR** PK

- Coadministration increased ATOR AUC_∞ and C_{max}, consistent with the inhibitory effect of DRV+COBI on CYP3A, P-gp/BCRP, and/or OATP1B1/1B3
Results: Cohort 3

Effect of ATV+COBI on ROS PK

Coadministration increased ROS AUC$_\infty$ and C$_{\text{max}}$, consistent with the potent inhibitory effect of ATV+COBI on OATP1B1/1B3 and P-gp/BCRP.
Results: Cohort 4
Effect of ATV+COBI on ATOR PK

Coadministration increased ATOR AUC∞ and Cmax, consistent with the potent inhibitory effect of ATV+COBI on CYP3A, OATP1B1/1B3, and/or P-gp/BCRP.
Conclusions

- All treatments were generally well-tolerated and all subjects completed the study.
- These study findings were consistent with the current dosing recommendations for ROS and ATOR upon coadministration with boosted DRV or ATV.

- It is recommended to initiate ROS or ATOR treatment with the lowest dose, and titrate to desired response while monitoring for safety.
- It is recommended not to exceed a dose of 10 mg ATOR daily and monitor for safety.
Acknowledgments

We extend our thanks to the study participants and study team. This study was funded by Gilead Sciences, Inc.