The extent of genetic variability in HBsAg C-terminus profoundly affects HBsAg levels in eAg-negative chronic HBV genotype D infection

Abst#_O_09

The authors declare that there are no conflicts of interest
Background

- HBsAg levels are proposed as marker of intrahepatic HBV reservoir (Volz et al 2007; Lu et al, 2008).

- A recent in-vitro study showed variation in HBsAg production in different HBV genotypes (Sozzi et al, 2016).

- Limited information is available on:
 - HBsAg levels in patients infected with different HBV genotypes in HBeAg-negative chronic HBV infection
 - Virological factors underlying such differences.
Aim of the study

Our study aims to investigate HBsAg levels in patients infected with different HBV genotypes in HBeAg-negative chronic infection.
Methods

This study includes 301 patients with HBeAg-negative chronic HBV infection, drug-naïve and monitored for >1 year.

The following groups were identified:

GROUP A
126 patients with persistent serum HBV-DNA <2,000 IU/ml and normal transaminases

GROUP B
175 patients with persistent serum HBV-DNA >2,000 IU/ml and normal/altered transaminases
Methods

- HBV genotype was determined by phylogenetic analysis.
- Mean genetic distance was used to estimate the extent of genetic variability in HBsAg by the Tajima-Nei model of MEGA v5.
- Binomial correlation coefficient (phi) was calculated to assess the strength of co-variation among mutations in HBsAg.
- I-Tasser is used to predict three-dimensional HBsAg structures (aa:1-226) and their stability ($\Delta \Delta G_{\text{wt-mutated}}<0$ indicating reduced stability in presence of mutation based on Quan, 2016).
Results
Patients’ characteristics

<table>
<thead>
<tr>
<th></th>
<th>Group A (N=126)</th>
<th>Group B (N=175)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients’ characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, N (%)</td>
<td>74 (58.7)</td>
<td>112 (64.0)</td>
</tr>
<tr>
<td>Median age, years (IQR)</td>
<td>40 (31-54)</td>
<td>39 (32-52)</td>
</tr>
<tr>
<td>Italian nationality, N (%)</td>
<td>47 (37.3)</td>
<td>37 (21.1)</td>
</tr>
<tr>
<td>Other countries, N (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East European Countries, N (%)</td>
<td>33 (26.2)</td>
<td>61 (34.9)</td>
</tr>
<tr>
<td>North European Countries, N (%)</td>
<td>17 (13.5)</td>
<td>44 (25.1)</td>
</tr>
<tr>
<td>Africa, N (%)</td>
<td>23 (18.3)</td>
<td>18 (10.3)</td>
</tr>
<tr>
<td>Asia, N (%)</td>
<td>6 (4.8)</td>
<td>15 (8.6)</td>
</tr>
<tr>
<td>HBV characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR) HBV-DNA, log IU/ml</td>
<td>2.7 (2.3-2.9)</td>
<td>4.0 (3.7-5.0)</td>
</tr>
<tr>
<td>Median (IQR) HBsAg, IU/mL</td>
<td>1475 (308-7547)</td>
<td>4695 (1695-10343)</td>
</tr>
<tr>
<td>Median (IQR) ALT, IU/L</td>
<td>27 (21-38)</td>
<td>34 (26-55)</td>
</tr>
<tr>
<td>Median (IQR) AST, IU/L</td>
<td>21 (17-27)</td>
<td>25 (18-36)</td>
</tr>
<tr>
<td>HBV Genotype:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, N (%)</td>
<td>91 (72.2)</td>
<td>137 (78.3)</td>
</tr>
<tr>
<td>A, N (%)</td>
<td>20 (15.9)</td>
<td>25 (14.3)</td>
</tr>
<tr>
<td>E, N (%)</td>
<td>15 (11.9)</td>
<td>13 (7.4)</td>
</tr>
</tbody>
</table>
In both group A and B, HBsAg levels are significantly lower in HBV genotype D than in genotype A and E.

Box plots were used to report the distribution of HBsAg values (IU/mL) in group A and B. Box plots report median, 25th percentile, 75th percentile, lower and upper whiskers, minimum and maximum values. Statistically significant differences were assessed by Mann-Whitney Test.
In patients with HBV-DNA ≤ 2000 IU/ml, HBsAg <1000 IU/ml can help identifying true inactive carrier patients in clinical practice.

Sonneveld et al., JVH 2011
Among group A (low viremic), the percentage of patients with HBsAg <1,000 IU/mL is significantly higher in genotype D than in genotype A and E.

The histogram shows the percentage of group-A patients with HBsAg <1,000 IU/mL stratifying according to HBV genotypes (D, N=91; A, N=20; E, N=15). Statistically significant differences were assessed by Fischer Exact Test.
Overall results suggest that in eAg-negative chronic HBV infection, genotype D is characterized by lower HBsAg levels. Can HBsAg genetic variability contribute to the low HBsAg levels in genotype D?
HBsAg C-terminus: a critical domain for HBsAg secretion

The figure reports the putative structure of the HBsAg by Stirck et al., 1992
In genotype D, low HBsAg levels correlate with a higher genetic variability in HBsAg C-terminus (↓ HBsAg ↑ genetic variability).

Scatter-plots report values of genetic distance (GD) for each patient. GD was used to define the extent of HBsAg C-terminus (aa: 170-226) variability in group-A patients infected with HBV genotype D stratifying according to HBsAg levels. Genetic distance was estimated as the extent of nucleotide substitutions per site determined by the Tajima-Nei model of MEGAv5. Statistically significant differences were assessed by Mann-Whitney Test.
Specific mutations in HBsAg C-terminus correlate with low HBsAg levels

The histogram shows the prevalence of mutations in HBsAg C-terminus, calculated in group A patients infected with genotype D, stratifying according to HBsAg <1,000 IU/mL or HBsAg >1,000 IU/mL. Statistically significant differences were assessed by Fischer Exact Test.
The figure reports the localization of 190, 204, 206, 207 and 210 positions in the putative structure of the HBsAg (Stirk et al., 1992)
• **Mutations associated with low HBsAg correlate with specific mutations in HBsAg C-terminus:**
 - this suggests the existence of different mutational pathways underlying lower HBsAg levels

<table>
<thead>
<tr>
<th>Mutations associated with low HBsAg</th>
<th>Frequency* N(%)</th>
<th>Correlated mutations</th>
<th>Frequency* N(%)</th>
<th>Covariation Frequency* N(%)</th>
<th>Phi^b</th>
<th>P-Value^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>V190A</td>
<td>7 (7.7)</td>
<td>F220L</td>
<td>15 (16.6)</td>
<td>5 (5.5)</td>
<td>0.41</td>
<td>0.003</td>
</tr>
<tr>
<td>S204N</td>
<td>26 (28.8)</td>
<td>F220L</td>
<td>15 (16.6)</td>
<td>9 (10)</td>
<td>0.25</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L205P</td>
<td>5 (5.5)</td>
<td>5 (5.5)</td>
<td>0.36</td>
<td>0.005</td>
</tr>
<tr>
<td>Y206F</td>
<td>12 (13.3)</td>
<td>S210R</td>
<td>10 (11.1)</td>
<td>6 (6.6)</td>
<td>0.47</td>
<td><0.001</td>
</tr>
<tr>
<td>S207N</td>
<td>22 (24.4)</td>
<td>Y200F</td>
<td>6 (6.6)</td>
<td>5 (5.5)</td>
<td>0.34</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P211R</td>
<td>4 (4.4)</td>
<td>4 (4.4)</td>
<td>0.36</td>
<td>0.007</td>
</tr>
<tr>
<td>S210N</td>
<td>5 (5.5)</td>
<td>F220L</td>
<td>15 (16.6)</td>
<td>4 (4.4)</td>
<td>0.40</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Binomial-correlation coefficient (phi) was calculated to assess co-variation among mutations associated with low HBsAg levels (< 1000 IU/mL). Statistically significant differences were assessed by Fischer Exact Test.

* Percentage were calculated on overall population of 90 HBV genotype D infected patients.

^b Median (IQR) HBsAg was calculated in patients with each statistically significant pair of mutations.
Mutations associated with low HBsAg determine a decreased stability of HBsAg C-terminus and……

The histogram shows the variation of HBsAg C-terminus stability in presence of mutations (single or in pair) associated with low HBsAg. The HBsAg C-terminus stability was measured by calculating $\Delta\Delta G$ (mutated - WT). $\Delta\Delta G$ was calculated by STRUM (Quan et al., Bioinformatics, 2016).
The table reports the structural modifications in the length of IV α-helix in HBsAg C-terminus determined by I_TASSER. Overall these data suggest a role of these mutations in altering the proper conformation of HBsAg C-terminus in ER membrane.
Conclusions

- HBsAg levels in HBV genotype-D are significantly lower than in genotype-A and -E in different phases of HBeAg-negative chronic HBV-infection including inactive-carrier status.

- In genotype-D infected patients, specific HBsAg C-terminus mutations significantly correlate with lower HBsAg-levels, and profoundly affect the conformation of this domain. This can explain the lower HBsAg levels observed in genotype-D.

- In this setting, this supports HBV-genotyping to better characterize patients with HBeAg-negative chronic HBV-infection.
Thanks to...

The Clinicians:
Prof. Massimo Andreoni, Loredana Sarmati, Vincenzo Malagnino, Carlotta Cerva, University of Rome Tor Vergata
Prof. Mario Angelico, University of Rome Tor Vergata
Miriam Lichtner, Claudio Mastroianni, “Sapienza” University of Rome
Massimo Marignani and Caterina Pasquazzi, ‘Sant’Andrea’ Hospital, Rome
Patrick T.F. Kennedy and Upkar S. Gill, Hepatology, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, UK
Jens Verheyen and Olympia Anastasiou, Institute of Virology, University-Hospital, University Duisburg-Essen, Essen, Germany
Prof. Sandro Grelli and Alessandra Iuvara, Tor Vergata University Hospital, Microbiology and Virology Unit, Rome
Nerio Iapadre, “San Salvatore Hospital”, L’Aquila
Terenzio Mari, “Nuovo Regina Margherita” Hospital, Rome
Giustino Parruti, Infectious Disease Unit, Pescara General Hospital, Pescara
Maurizio Paoloni, “S.S. Filippo e Nicola” Hospital, Infectious Disease Unit, Avezzano

Virology Group
University of Rome Tor Vergata:
Prof. Carlo Federico Perno
Valentina Svicher
Romina Salpini
Luna Colagrossi
Lorenzo Piermatteo
Lavinia Fabeni
Vanessa Fini
Luca Carioti
Domenico Di Carlo

Acknowledgments: