Influence of Bacterial Growth Rate on Dose Optimization of Linezolid for Treatment of Tuberculosis

Kristina Bigelow
Johns Hopkins University School of Medicine
10/15/2017
Linezolid

• Recently added to WHO's 2nd line approved anti-TB agents
• Demonstrated efficacy as a salvage agent (Lee et. al, NEJM, 2012)
 • XDR-TB: LZD 300-600mg added to failing regimen
 • 87% sputum conversion after 6 months of LZD
 • 31 out of 38 patients had severe adverse events
 • Myelosuppression, peripheral neuropathy

• Component of novel “pan-TB” regimen (Conradie et al, CROI, 2017)
 • Pretomanid 200mg + Bedaquiline 200mg + LZD 1200mg x 6 months
 • Of first 34 pts completing treatment, 74% culture-negative at 8 wks (all negative at 16 wks)
 • Of first 20 pts completing 6 months of follow-up after treatment, only 1 relapse reported
 • 24 out of 33 had severe adverse events
 • Myelosuppression, peripheral neuropathy
LZD dose optimization

What PD parameter correlates best with LZD bactericidal effect?
- *In vitro* hollow fiber system, normal media (LZD, SZD) $T_{>\text{MIC}}^1$
- *In vitro* hollow fiber system, acidified media (LZD) AUC/MIC^2
- Mouse model (LZD, SZD, AZD) $\text{AUC}/\text{MIC}^{3,4}$

What TD parameter correlates best with LZD mitochondrial toxicity?
- *In vitro* hollow fiber system (LZD) C_{min}^1
- Clinic (LZD) C_{min}^{5-8}

5. Cattaneo et al, IJAA 2013; 41:586
6. Pea et al, JAC 2012; 67:2034
7. Matsumoto et al, IJAA 2014;44:242
8. Song et al, EBiomed 2015; 2:1627
Hypothesis

Under certain conditions less frequent administration of the same total dose will maximize bactericidal effects while minimizing toxicity.

If this is true then:

Dosing LZD at 1200 mg q48 hr will preserve efficacy (while reducing toxicity) compared to 600 mg q24 hr and 300 mg q12 hr.
Questions to be answered

• What is the effect of different linezolid dosing schedules on bacterial killing and selection of drug-resistant mutants?

• Does the PK/PD parameter that best correlates with efficacy differ against different “growth states” of *Mtb*?

<table>
<thead>
<tr>
<th></th>
<th>Log phase growth</th>
<th>Slow growth (induced by companion drug)</th>
<th>No net growth (induced by companion drug)</th>
<th>No net growth (induced by other constraints*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constraints in the in vitro system are imposed by achieving the stationary phase of culture. Constraints in the in vivo system are imposed by the onset of adaptive immune response.
I. *In-vitro* Pharmacodynamics/Pharmacokinetics (IVPD) system
Linezolid PK/PD Parameters in IVPDS expts.

<table>
<thead>
<tr>
<th>Dose</th>
<th>Cmax (µg/mL)</th>
<th>AUC (µg*h/ml)</th>
<th>%Time/MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>300mg q12hr</td>
<td>7.95</td>
<td>180</td>
<td>92</td>
</tr>
<tr>
<td>600mg q24hr</td>
<td>13.71</td>
<td>173</td>
<td>67</td>
</tr>
<tr>
<td>1200mg q48hr</td>
<td>27.42</td>
<td>176</td>
<td>29</td>
</tr>
</tbody>
</table>
Effect of linezolid dose fractionation against log phase growth in the IVPD system

Effect of linezolid dose fractionation against log phase growth in the IVPD system

- Untreated
- 300mg q12hr
- 600mg q24hr
- 1200mg q48hr

Log cfu/mL Day 0
- Control = 6.68 ± 0.64

Δ log cfu/mL (Day 0 → Day 14)
- 1200mg q48hr = -2.09 ± 1.14
- 600mg q24hr = -2.62 ± 0.85
- 300mg q12hr = -3.58 ± 0.49
Effect of linezolid dose fractionation against a no-growth state imposed by companion drugs in the IVPD system

Log cfu/mL Day 0
- Control = 7.78

Difference log cfu/mL Day 14
- 1200mg q48hr = 4.72 ± 0.33
- 600mg q24hr = 4.74 ± 0.36
- 300mg q12hr = 5.05 ± 0.1
Questions to be answered

- What is the effect of different linezolid dosing schedules on bacterial killing and selection of drug-resistant mutants?
- Does the PK/PD parameter that best correlates with efficacy differ against different “growth states” of *Mtb*?

<table>
<thead>
<tr>
<th></th>
<th>Log phase growth (induced by companion drug)</th>
<th>Slow growth (induced by companion drug)</th>
<th>No net growth (induced by other constraints*)</th>
<th>No net growth (induced by other constraints*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Time above MIC</td>
<td>AUC/MIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Constraints in the in vitro system are imposed by achieving the stationary phase of culture Constraints in the in vivo system are imposed by the onset of adaptive immune response
II. *In-vivo* Mouse Studies
Effect of linezolid dose fractionation in a log phase growth TB infection model in BALB/c mice

Dosing frequency and # of weekly doses
- 3 doses/week
- 5 doses/week
- 10 doses/week
- 14 doses/week
- No treatment

Total dose per week
- 100 mg/kg
- 300 mg/kg
- 1000 mg/kg

Log_{10} CFU/lung

Day 0
Effect of linezolid dose fractionation in a no net growth TB infection model in BALB/c mice

Dosing frequency and # of weekly doses
- 3 doses/week
- 5 doses/week
- 7 doses/week
- 14 doses/week
- No treatment

Log₁₀ CFU/lung

Total dose per week
- No Treatment
- 100 mg/kg
- 300 mg/kg
- 1000 mg/kg

Day 0

INH (Control)
Rifampin (Control)
LZD (Control)
Rifampin + Ethambutol
Questions to be answered

• What is the effect of different linezolid dosing schedules on bacterial killing and selection of drug-resistant mutants?

• Does the PK/PD parameter that best correlates with efficacy differ against different “growth states” of *Mtb*?

<table>
<thead>
<tr>
<th></th>
<th>Log phase growth</th>
<th>Slow growth (induced by companion drug)</th>
<th>No net growth (induced by companion drug)</th>
<th>No net growth (induced by other constraints*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Time above MIC</td>
<td></td>
<td>AUC/MIC</td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>Time above MIC</td>
<td></td>
<td></td>
<td>AUC/MIC</td>
</tr>
</tbody>
</table>

Constraints in the in vitro system are imposed by achieving the stationary phase of culture
Constraints in the in vivo system are imposed by the onset of adaptive immune response
Effect of linezolid dose fractionation in a slow growth TB infection model induced by pretomanid (Pa) 12.5 mpk/day
Effect of linezolid dose fractionation in a no net growth TB infection model induced by Pa 50 mpk/day

- **3 doses/week**
- **5 doses/week**
- **7 doses/week**
- **14 doses/week**

Dosing frequency and # of weekly doses
- 3 doses/week
- 5 doses/week
- 7 doses/week
- 14 doses/week
- No treatment

Log$_{10}$ CFU/lung

- **No Treatment**
- **Control**
- **Total dose per week**

PA
- 100 mg/kg
- 300 mg/kg
- 1000 mg/kg

INH (Control)

Rifampin (Control)

LZD (Control)
Comparison of dose fractionation studies in mice

Dosing frequency and
of weekly doses
- 3 doses/week
- 5 doses/week
- 7 doses/week
- 14 doses/week
- No treatment

No treatment

Log phase growth

Slow growth

No growth due to companion agent

No net growth
Questions to be answered

• What is the effect of different linezolid dosing schedules on bacterial killing and selection of drug-resistant mutants?

• Does the PK/PD parameter that best correlates with efficacy differ against different “growth states” of *Mtb*?

<table>
<thead>
<tr>
<th></th>
<th>Log phase growth</th>
<th>Slow growth (induced by companion drug)</th>
<th>No net growth (induced by companion drug)</th>
<th>No net growth (induced by other constraints*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Time above MIC</td>
<td>AUC/MIC</td>
<td>AUC/MIC</td>
<td>AUC/MIC</td>
</tr>
<tr>
<td>In vivo</td>
<td>Time above MIC</td>
<td>Time above MIC</td>
<td>AUC/MIC</td>
<td>AUC/MIC</td>
</tr>
</tbody>
</table>

Constraints in the in vitro system are imposed by achieving the stationary phase of culture

Constraints in the in vivo system are imposed by the onset of adaptive immune response
Effect of linezolid dose fractionation on **selective amplification of resistance** during log phase growth in the IVPD system.
Interim Conclusions

- Under net growth conditions, efficacy driver is likely Time above MIC.
- Under no net growth conditions, efficacy driver is likely AUC/MIC.
- C_{max} appears to drive LZD resistance suppression.
- Taken together, these data suggest that:
 - When Mtb is actively replicating (e.g., early in treatment, with weak companion drugs), more frequent dosing to maintain adequate T>MIC may be beneficial.
 - When growth is restrained (e.g., with active companion drugs), the same total dosage delivered in higher, less frequent doses (e.g., q48 hrs) should achieve similar anti-TB effect while minimizing risk of trough-driven toxicity and selection of LZD resistance.

<table>
<thead>
<tr>
<th></th>
<th>Log phase growth</th>
<th>Slow growth (induced by companion drug)</th>
<th>No net growth (induced by companion drug)</th>
<th>No net growth (induced by other constraints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Time above MIC</td>
<td></td>
<td>AUC/MIC</td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>Time above MIC</td>
<td>Time above MIC</td>
<td>AUC/MIC</td>
<td>AUC/MIC</td>
</tr>
</tbody>
</table>
Future Aims

• Replicate IVPDS experiments, using higher and lower drug exposures to account for population-level PK variability

• Perform PK/PD analyses to confirm target parameters for dose optimization

• Adopt toxicodynamic model using K562 cells to study mitochondrial toxicity in IVPD system

• Extend studies to novel TB-focused oxazolidinones in development with reduced MPS inhibition potential
Acknowledgements

• Dr. Eric Nuermberger
• Dr. Kelly Dooley
• Jin Lee
• Sandeep Tyagi
• Dr. Heena Soni
• Dr. Rokeya Tasneen
• Si-Yang Li
• Kala Barnes-Boyle

• Funding
 • R01-AI-111992