Ototoxicity is associated with exposure to Kanamycin & Capreomycin in the treatment of MDR TB

Mohammad H. Alshaer, Yosra Alkabab, Stellah G. Mpagama, Anna Cholongo, Buliga Mujaga, Jean Gratz, Eric R. Houpt, Charles Peloquin, Scott K. Heysell
Background

- MDR and XDR TB burden: cost & mortality
- Aminoglycosides are part of the treatment of drug-resistant tuberculosis
- Concentration-dependent killing
- Adversely affect auditory, vestibular, and renal function
Background

• Risk of ototoxicity of *streptomycin, kanamycin,* and *amikacin* was associated with older age and larger cumulative dose received, but not the size of dose or the frequency.

• Cumulative days of therapy and AUC of *amikacin*: primary predictors of hearing loss.

• *Amikacin/kanamycin*: no correlation with dose (per kg / cumulative), duration, gender, age, BMI, weight, AUC$_{0-24}$, weighted C$_{max}$
 ○ At 8000 Hz: dose correlated with hearing loss
Methods

- Prospective cohort study *(ongoing)*
- Sites: Tanzania, Bangladesh, Russian Federation
- *Inclusion*: MDR TB, receiving capreomycin / kanamycin
- *Exclusion*: pregnant, unable to undergo sample collection / consent / return or contacted for follow up
Methods

- Subjects were enrolled in the hospital and followed for up to 96 weeks
Methods

- Hearing testing:
 - Baseline, 1, 2, and 6 months after initiation of treatment
- Threshold measurements:
 - via air conduction at 250, 500, 1000, 2000, 4000, 6000, and 8000 Hz.
 - via bone conduction at 500, 1000, 2000, and 4000 Hz.

- Ototoxicity: pure tone threshold change (loss) ≥20dB compared to baseline at any frequency.
Methods

• PK samples:

 Weeks 1 2 3 4 5 6 7 8

 1,2,6,12 hr 2,6 hr 2,6 hr

• UF Infectious Disease Pharmacokinetics Lab

• Phoenix WinNonlin v7.0: NCA highest AUC_{0-12} with corresponding C_{max} and $t_{1/2}$
Methods

• Pretreatment sputum samples:
 • MIC testing and culture

• Statistical analysis:
 • JMP v13
Results

- Tanzania data only

<table>
<thead>
<tr>
<th>Baseline characteristics<sup>a</sup></th>
<th>N=31 (225 serum samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>37.6 (20-68)</td>
</tr>
<tr>
<td>Males, n (%)</td>
<td>22 (71)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>52 (31-81)</td>
</tr>
<tr>
<td>Treatment received, n<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Kanamycin</td>
<td>30</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>10</td>
</tr>
<tr>
<td>Total duration of treatment prior to ototoxicity or audit, weeks</td>
<td>24 (2-32)</td>
</tr>
<tr>
<td>MIC, mcg/mL</td>
<td></td>
</tr>
<tr>
<td>Kanamycin<sup>c</sup></td>
<td>1.2 (0.3-10.0)</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>0.6 (0.3-2.5)</td>
</tr>
</tbody>
</table>

^a data presented as medians and ranges unless specified; ^b the total exceeds 31 as some patients were switched from one treatment to the other; ^c two patients had MIC of 10 mcg/mL for kanamycin
Results

• Gender vs. Ototoxicity

2 females (22%) vs. 11 males (50%)

p>0.05
Results

• Agea vs. Ototoxicity

no ototoxicity: 33 years (20-48)

ototoxicity: 45 years (27-68)

\[p = 0.01 \]

a Data presented as median and range
Results

• Weighta vs. Ototoxicity

no ototoxicity: 51 kg (36-81)

ototoxicity: 57.5 kg (31-73)

p>0.05

a Data presented as median and range
Results

• Duration of therapya vs. Ototoxicity

 no ototoxicity: 24 weeks (2-32)
 ototoxicity: 24 weeks (8-32)

 \(p > 0.05 \)

a Data presented as median and range
Results

- **Capreomycin**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No Ototoxicity</th>
<th>Ototoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (mcg/mL)</td>
<td>24.9</td>
<td>25.7 (8.8-43.5)</td>
</tr>
<tr>
<td>$t_{\frac{1}{2}}$ (hr)</td>
<td>2.4</td>
<td>2.7 (2.5-4.2)</td>
</tr>
</tbody>
</table>

 $p > 0.05$

a) Data presented as median and range
Results

- **Capreomycin**

 $\text{AUC}_{0-12} (\text{hr.mcg/mL})$
 - no ototoxicity: 121.2
 - ototoxicity: 197.5 (119.4-227.2)

 $p > 0.05$ (small N)

 a) Data presented as median and range
Results

• Kanamycin

\[\text{Cmax (mcg/mL)} \]
 no ototoxicity: \(27.8 \ (15.7-65.1) \)
 ototoxicity: \(36.9 \ (23.9-50.5) \)

\[\text{t}_{1/2} (\text{hr}) \]
 no ototoxicity: \(2.4 \ (1.3-5.5) \)
 ototoxicity: \(2.4 \ (1.6-7.3) \)

\(p>0.05 \)

a) Data presented as median and range
Results

• Kanamycina

\textbf{AUC}_{0-12} (hr.mcg/mL)

no ototoxicity: 153.5 (72.9-250.6)

ototoxicity: 228.8 (111-334.9)

p=0.03

a) Data presented as median and range
Conclusions

• KM and CM ototoxicity were associated with older age and higher AUC_{0-12}

• C_{max}/MIC and AUC/MIC: dosing with lower exposure and toxicity

• Ongoing study: target enrollment of 125 MDR each from Tanzania (current N=72), Bangladesh (current N=68), Russia (current N=51)
 • more exposure and toxicity data: better assess other determinants or confounders
Acknowledgement

• **Support/acknowledgement:** NIH U01 AI115594

• ID PK Laboratory, U of Florida (Charles Peloquin, Mohammad Alshaer, TJ Zagurski, Kyung Mee Kim, Emily Graham)

• Kilimanjaro Clinical Research Institute (Margaretha Sariko, Buliga Mujaga, Blandina Mmbaga)

• Haydom Lutheran Hospital (Esto Mduma, Justine Museveni)

• Kibong’oto Infectious Diseases Hospital (Stellah Mpagama, Anna Chongolo, Riziki Kisonga)

• icddr,b (Sayera Banu, Shahriar Ahmed, Sara Sabrina Ferdous, S.M. Mazidur Rahman)

• Irkutsk TB Referral Hospital and Scientific Centre (Oleg Ogarkov, Elena Moiseeva, Svetlana Zhdanova, Elena Zorkaltseva, Alexei Suldinitisky, Mikhail Koshcheyev)

• Mbarara University Science Technology/ Epicentre (Conrad Moozura, Juliet Mwaga, Yap Baum)

• U of Virginia (Scott Heysell, Eric Houpt, Tania Thomas, Suporn Pholwat, Suzanne Stroup, Jean Gratz, Steve Becker, Serhiy Vitko, Darwin Operario, Andrew Ebers, Yusra Alkabab, Chris Moore, Rebecca Dillingham)