DIFFERENTIAL RESPONSES OF MEMORY CD4+ T CELL SUBSETS TO HIV LATENCY REVERSING AGENTS

Deanna Kulpa, Ph.D.
WHERE DOES HIV PERSIST?
CD4+ T CELLS BEST CHARACTERIZED RESERVOIR

Eradication strategies to target HIV in these subsets will need to address the heterogeneity of this complex population that harbors the latent reservoir.
LARA: Latency and Reversal Assay Recapitulate CD4+ T Cell Reservoir Heterogeneity in Vitro

Signaling pathways characteristic of each memory CD4+ T cell subset are maintained in LARA culture.
LARA CONDITIONS GENERATE A SIMILAR HIERARCHY OF INFECTED SUBSETS AS OBSERVED IN VIRALLY SUPPRESSED HIV-INFECTED INDIVIDUALS

LARA in vitro conditions recapitulate the dynamics of the HIV latent CD4+ T cell reservoir in vivo
LARA allows monitoring of latency reversal in total memory, CM, TM and EM CD4+ T cell subsets in a single assay.

LARA generates latently infected cells capable of efficient latency reversal in all memory CD4+ T cell subsets.
Memory CD4+ T cell subsets show range of responses to latency reversing agents

Bryostatin induces highest efficiency of latency reversal in EM and TM subsets
Why do subsets respond differently to LRAs?

Employ a bioinformatics approach to identify pathways for latency reversal in memory CD4+ T cell subsets

Cohort of virally suppressed HIV-infected individuals

Sort memory CD4+ T cell subsets ex vivo
n=4

Activate with LRA

TILDA + RNAseq

TILDA- a quantitative PCR assay that measures the frequency of inducible cell associated multi-spliced HIV RNA

TILDA

HIV mRNA frequency per million CD4+ T cells

CM | TM | EM

n=4

unstimulated, PMA, ionomycin, bryostatin, IL-15

unstimulated, PMA, ionomycin, bryostatin, IL-15

unstimulated, PMA, ionomycin, bryostatin, IL-15
TRANSCRIPTOMIC ANALYSIS REVEALS LRAS INDUCE DIFFERENT PATHWAYS IN CD4+ T CELL SUBSETS

LRAs activate pathways that lead to proliferation and effector T cell differentiation:

- LRAs activate pathways that lead to proliferation and effector T cell differentiation:
 - Transition to EM phenotype as a pathway to latency reversal
 - However, although there is some overlap, LRAs do not up-regulate the same pathways in all subsets
LARA recapitulates the heterogeneity of the CD4+ cell HIV reservoir through the generation of latently infected cells in CM, TM and EM subsets.

LRAs show range of efficiencies in memory CD4+ T cell subsets – potentially explained by the differential cellular pathway induction in response to LRAs in the CM, TM and EM subsets.

Transcriptomic analyses support that the transition to an EM phenotype as a potential pathway to latency reversal.

LRAs can be used to characterize mechanisms that govern HIV latency maintenance and reversal in different CD4+ T cell subsets providing a greater understanding of HIV persistence.

Together, these data provide evidence that latency reversal as a therapeutic strategy will require a better understanding of the mechanisms of latency in these physiologically diverse subsets.
ACKNOWLEDGMENTS

Case Western Reserve University
Rafick-Pierre Sékaly
Aarthi Talla
Susan Ribeiro

Université de Montréal
Nicolas Chomont

Sally Yuan
Anne-Gaelle Bebin-Blackwell
Jessica Brehm
Francesco Procopio

Merck
Daria Hazuda
Mike Miller
Richard Barnard

Study Participants
LRA combinations with different MOA can induce subset specific latency reversal.

LRA with different MOA can be used to delineate CD4+ T cell subset-specific mechanisms of HIV latency maintenance and reversal.