The “window of opportunity”: harnessing the pediatric immune landscape for life long vaccine-elicited protection

Sallie Permar, MD, PhD
Duke University Medical Center
Dept of Pediatrics, Immunology, Molecular Genetics and Microbiology
Prevention Committee, IMPAACT
@salliepermar
Neonatal immune development

Infant humoral immunity development

- Transferred maternal IgG
- Transient IgG deficiency
- IgM
- IgG
- IgA
- Th1
- Treg
- Th2
- Early B cell development

Birth 2 4 6 12 24 36 month

Weaning
Frequent opportunities for pediatric vaccine dosing

Vaccination Schedule 2016

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccine</th>
<th>Birth</th>
<th>6 weeks</th>
<th>10 weeks</th>
<th>14 weeks</th>
<th>6 months</th>
<th>9 months</th>
<th>12 months</th>
<th>15 months</th>
<th>18 months</th>
<th>6 years</th>
<th>9 & 10 years</th>
<th>12 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>BCG</td>
<td></td>
</tr>
<tr>
<td>Polio</td>
<td>OPV</td>
<td></td>
</tr>
<tr>
<td>Diphtheria, Tetanus, Pertussis, Polio, Haemophilus Influenza, Hepatitis B</td>
<td>Hexaxim OR Infarrix Hexa</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal</td>
<td>Prevenar 13 OR Synflorix</td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>RotaTeq OR Rotarix</td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>Measbio</td>
<td></td>
</tr>
<tr>
<td>Measles Mumps Rubella</td>
<td>Rouvax OR Priorix</td>
<td></td>
</tr>
<tr>
<td>Meningococcal Meningitis</td>
<td>Menactra</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>AVALIX® Avaxim®</td>
<td></td>
</tr>
<tr>
<td>Chickenpox</td>
<td>Varilrix</td>
<td></td>
</tr>
<tr>
<td>Tetanus, Diphtheria + Pertussis, Polio</td>
<td>Td OR ADACEL QUADRA®</td>
<td></td>
</tr>
<tr>
<td>Human Papilloma Virus</td>
<td>Cervarix OR Gardasil</td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>VAXIGRI®</td>
<td></td>
</tr>
<tr>
<td>Respiratory Syncitial Virus</td>
<td></td>
</tr>
</tbody>
</table>

State Epi Vaccines: These vaccines are available free from Government supplied clinics

Recommended Optional Vaccines: Some of the vaccines in this schedule are only available from private clinics

New bacterial vaccine recommended due to increased risk of importation polio

If no HepB at birth must be given at 6, 12 & 16 weeks

New meningococcal vaccine. Must not be given together with any other vaccine.

Rotavirus will be phased out in 2014/15 and replaced by Measbio.

Can be given at 9 months if no single measles vaccine available.

For individuals 2-55 years administer one dose

Can be given at 12 years if not given at 6 years.
Opportunity to direct the microbiome development for optimal vaccine-elicited immune responses.
B cell receptor somatic hypermutation and CDR3 lengths rapidly change in first year of life

Somatic hypermutation

IgG CDR3 length

Li Yin, UF
Johns Sleasman, Duke
Maureen Goodenow, NIH
Kristina DeParis, UNC
Pediatric HIV Env immunization to induce broad responses that persist into adolescence/adulthood
Pediatric HIV immunization for lifelong immunity

Modeling studies suggest that a vaccine that protects prior to sexual debut would significantly reduce both adolescent/adult and subsequent infant HIV-1 infections.
High coverage of multi-dose vaccines initiated in infancy (U.S.)

Vaccine-specific coverage* among children 19-35 months, National Immunization Survey, 1994-2014

- Infant HepB vaccine (3 doses)
- Adolescent HPV vaccine (females, 3 doses)
Persistence of Env vaccine-elicited responses >2yrs in rgp120/MF59 pediatric vaccine trials

- **Durable responses >2 yrs to rgp120/MF59**

- 22 fold higher V1V2 IgG response in Env/MF59 immunized infants vs RV144 vaccinees

- 56% of infants still had responses at **2 years**

Fouda et al, JID, 2014
Isolation of HIV Env-reactive mAbs from a Chiron rgp120/MF59 vaccinated infant

46 gp140 positive memory B cells

37 mAb pairs

24 gp140 reactive mAbs, all IgG1

0 gp41 reactive

20 gp120 reactive mAbs

1 V3 reactive mAb

12 CD4 bs reactive mAbs (YU2 core/not mutant)

7 mAbs fine specificity undetermined

Giny Fouda, Tony Moody
Comparison of infant and adult vaccine-elicited Env-specific mAbs at peak response

Infant: Chiron SF2 gp120 + MF59, 4 doses over 6 mo

Adult: GSK PRO HIV002 clade B gp120 W6.10/Nef-Tat + ASO1B, 4 doses over 6 mo

Giny Fouda
Moody et al, JV, 2012
Infant immune landscape and bNAb development

- HIV-1-infected infant frequently produce bnAbs (Goo and Overbaugh et al. Nature Medicine; 2014; Goulder et al CROI 2016)

- Infant nAbs have low SMH (Simonich and Overbaugh et al. Cell 2016)
B cell lineage design vaccines and the pediatric immune landscape

CH505 Envelopes selected from individual with broad neutralizing activity as vaccine immunogens

Collaboration between: Duke CHAVI-ID, IMPAACT, IDRI, HVTN

(Williams, Han, Haynes et al., In preparation)
Study design of IMPAAACT CAP523

Immunization of HIV-exposed uninfected infants with CH505 Env immunogens (24 participants per group)

1) Sequential immunization with a single Env immunogen
2) Sequential immunization with combination of Env immunogens

<table>
<thead>
<tr>
<th>Group</th>
<th>Birth</th>
<th>2 wks</th>
<th>2 mo</th>
<th>4 mo</th>
<th>9 mo</th>
<th>18mo, 2yrs, 3yrs, 4yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1</td>
<td>TF</td>
<td>w53</td>
<td>w78</td>
<td>w100</td>
<td>w100</td>
<td>w100</td>
</tr>
<tr>
<td>G 2</td>
<td>TF, w53</td>
<td>w53, 78</td>
<td>w78, 100</td>
<td>w100</td>
<td>w 100</td>
<td></td>
</tr>
<tr>
<td>G 3</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
</tbody>
</table>
What are the differences in the adult and infant antibody responses to the same HIV Env vaccine?
Adult and infant HIV rgp120 vaccine study population

PACTG 230: HIV exposed infants vaccinated with either rgp120 (SF-2)/MF-59 (Chiron) or rgp120 (MN)/alum (VaxGen)
- 4 vaccine doses between **birth and 20 weeks** of age

AVEG 201: Uninfected adults with different exposure risk immunized either with the Chiron or VaxGen vaccine
- 4 vaccine doses between **0 and 52 weeks**

<table>
<thead>
<tr>
<th>Study</th>
<th>Age group</th>
<th>Placebo</th>
<th>rgp120/MF59</th>
<th>rgp120/alum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVEG 201</td>
<td>Adults</td>
<td>10</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>PACTG 230</td>
<td>Infants</td>
<td>16</td>
<td>45</td>
<td>47</td>
</tr>
</tbody>
</table>
Magnitude of Env-specific IgG is higher in rgp120/MF59 vaccinated infants (wk 24) than adults (wk 54)

MN gp120

<table>
<thead>
<tr>
<th>Frequency of responders at peak immunogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>adults</td>
</tr>
<tr>
<td>MN gp120</td>
</tr>
<tr>
<td>gp70 B case V1V2</td>
</tr>
</tbody>
</table>
Infant rgp120/MF59 ab responses remain higher than peak adult response 6 mo after last vaccine dose

<table>
<thead>
<tr>
<th>Frequency of response</th>
<th>Placebo adults</th>
<th>Placebo infants</th>
<th>rgp120/MF59 adults</th>
<th>rgp120/MF59 infants</th>
<th>rgp120/alum adults</th>
<th>rgp120/alum infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN gp120</td>
<td>0</td>
<td>8</td>
<td>69</td>
<td>77</td>
<td>85</td>
<td>68</td>
</tr>
<tr>
<td>gp70 B case V1V2</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>95</td>
<td>2</td>
<td>27</td>
</tr>
</tbody>
</table>

Giny Fouda
Youyi Fong
rgp120/MF59 induces a higher proportion of V1V2 IgG3 responders in infants than in adults.

gp70 B case A V1V2 IgG

<table>
<thead>
<tr>
<th></th>
<th>Infant Chiron</th>
<th>Adult Chiron</th>
<th>Infant VaxGen</th>
<th>adult VaxGen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent responders at week 0</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Percent responders at week 24/54</td>
<td>40</td>
<td>40</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Summary I – Infant vs adult HIV Env vaccine immunogenicity

- Infants vaccinated with rgp120/MF-59 have higher magnitude gp120 and V1V2 IgG responses compared to adults at peak immunogenicity and 6 months later.

- Infant vaccination with rgp120/MF-59 induces a higher frequency of V1V2 IgG3 responders than in adults.

- Infant rgp120-induced antibody responses are durable for >2 yrs.
What is the optimal HIV Env viral vector prime-boost regimens for infants?

Sallie Permar, MD, PhD
Koen Van Rompay, DVM
Kristina De Paris, PhD
Preclinical MVA-rgp120 vaccine optimization in infant rhesus monkeys

- Env Protein Only (n=5)
- Conventional (n=5)
- Co-Administration (n=5)
- Extended Interval (n=5)

Legend:
- MVA-HIV Env : IM
- MVA-SIV gag/pol : IM
- HIV Env Protein : IM/IN

 NX
Infant monkey vaccine-elicited plasma gp120-specific IgG kinetics

Consensus 6 gp120 IgG Plasma Concentration

Early Response

Persistence

Extended Interval
Protein Only
Co-Administration
Conventional

Weeks (Age)

ng/mL

0 1 2 3 4 5 6

Weeks

= Shorter Interval Immunizations

= Extended Interval Immunizations
Infant monkey vaccine-elicited plasma V1V2 IgG responses

Clade C V1V2 Epitope Plasma IgG

Exact Wilcoxon rank-sum test
Infant monkey MVA/rgp120 HIV vaccine optimization
tier 1 neutralizing antibodies: MW965, Clade C

<table>
<thead>
<tr>
<th>Date</th>
<th>Conventional</th>
<th>Co-Administration</th>
<th>Protein Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45035 45042 45054 45081 45082</td>
<td>45038 45047 45069 45083 45091</td>
<td>45519 45521 45522 45532 45535</td>
</tr>
<tr>
<td>Wk 0</td>
<td><20 <20 <20 <20 <20</td>
<td><20 <20 <20 <20</td>
<td>21 22 <20 24 30</td>
</tr>
<tr>
<td>Wk 3</td>
<td></td>
<td><20 <20 <20 <20</td>
<td><20 <20 27 41 <20</td>
</tr>
<tr>
<td>Wk 6</td>
<td><20 <20 <20 <20 <20</td>
<td>118 345 51 359 <20</td>
<td>384 57 1370 216 63</td>
</tr>
<tr>
<td>Wk 8</td>
<td>205 548 29 112 90</td>
<td>829 163 279 1517 393</td>
<td>1948 1061 1198 412 659</td>
</tr>
<tr>
<td>Wk 10</td>
<td>248 295 <20 92 138</td>
<td>714 89 129 673 147</td>
<td>1350 1126 598 294 1593</td>
</tr>
<tr>
<td>Wk 12</td>
<td>318 226 29 85 218</td>
<td>314 425 107 60 58</td>
<td>1276 1133 564 306 2483</td>
</tr>
<tr>
<td>Wk 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk 15</td>
<td>331 128 47 89 333</td>
<td>233 159 121 381 37</td>
<td>746 1205 297 146 1158</td>
</tr>
<tr>
<td>Wk 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wk 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutralization ID$_{50}$ + Persistence

Protein-only group achieved higher magnitude and durable tier 1 virus neutralization responses
Infant monkey MVA/rgp120 HIV vaccine optimization tier 1 neutralizing antibodies: MW965, Clade C

<table>
<thead>
<tr>
<th>Date</th>
<th>Co-Administration</th>
<th>Extended Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45038</td>
<td>45047</td>
</tr>
<tr>
<td>Wk 0</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Wk 3</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Wk 6</td>
<td>118</td>
<td>345</td>
</tr>
<tr>
<td>Wk 8</td>
<td>829</td>
<td>163</td>
</tr>
<tr>
<td>Wk 10</td>
<td>714</td>
<td>89</td>
</tr>
<tr>
<td>Wk 12</td>
<td>314</td>
<td>425</td>
</tr>
<tr>
<td>Wk 14</td>
<td>233</td>
<td>159</td>
</tr>
<tr>
<td>Wk 15</td>
<td>364</td>
<td>734</td>
</tr>
<tr>
<td>Wk 16</td>
<td>150</td>
<td>244</td>
</tr>
<tr>
<td>Wk 18</td>
<td>162</td>
<td>150</td>
</tr>
</tbody>
</table>

Extended vaccine intervals (q3->q6 weeks) may increase neutralizing Ab responses.
Infant monkey vaccine-elicited ADCC responses against vaccine and heterologous strain gp120

SHIV C = SHIV1157ipd3N4
Splenic and Oral Lymph Node T Follicular Helper Cells

Spleen

IL-4 Production in TFH Cells

![Graph showing IL-4 production in spleen with p=0.0079 comparison between Protein only, Conv., and Co-Administration groups.](image)

Oral LN

IL-4 Production in TFH Cells

![Graph showing IL-4 production in oral lymph nodes with p=0.0159 comparison between Protein only, Conv., and Co-Administration groups.](image)

Exact Wilcoxon rank-sum test
HIV gp120-Specific B cells in GI tract dependent on extended vaccine intervals/age

Antigen-Specific B cells

Axillary LN

Rectal biopsies

Normalized % gp120-Specific B Cells

Exact Wilcoxon rank-sum test
HIV Env-specific IgA in stool higher magnitude after extended vaccine intervals

Maximum gp120-specific IgA in Stool

Exact Wilcoxon rank-sum test
Harnessing the microbiome diversification of the infant GI tract for elicitation of optimal vaccine responses
Diversion of HIV-1 Env vaccine elicited immune responses by gut microbiota cross-reactive pre-existing antibodies

Williams et al, Science 2015
Infant rhesus monkey stool bacterial diversity over time

- **Week 0**
 - Predominant: Prevotella
 - Other: Succinivibrio, S24-7, Bifdobacterium, Megasphaera

- **Week 14**
 - Predominant: Prevotella
 - Other: Succinivibrio, S24-7, Bifdobacterium, Megasphaera

- **Week 24**
 - Predominant: Prevotella
 - Other: Succinivibrio, S24-7, Bifdobacterium, Megasphaera

- **Week 35**
 - Predominant: Prevotella
 - Other: Succinivibrio, S24-7, Bifdobacterium, Megasphaera
Bacterial taxa cluster in their kinetics of infant stool microbiome population.
Correlation of magnitude of vaccine-elicited humoral immune responses and bacterial taxa
Summary II – Infant vs adult HIV Env vaccine immunogenicity

- Infant immunization + microbiome manipulation may be a strategy to avoid “diverting” B cell lineages and promote protective B cell lineages

- Infants have robust and durable antibody responses to rgp120-MF59 immunization

- Extended interval infant prime-boost vaccination results in high GI tract ab responses

- Abundance of certain bacteria in the infant GI tract (Firmicutes) may be associated with the magnitude of B cell responses to infant HIV Env vaccination
Mother/infant NHP HIVRAD Collaborators

Permar Laboratory
Giny Fouda
Beth Bryant
Maria Dennis
Josh Eudailey
Holly Heimsath
Jonathan Himes
Hannah Itell
Erika Kunz
Olaf Mueller

Moody Laboratory
Yousef Abuahmad
Lawrence Armand
Whitney Binz
Thad Gurley
Tarra Von Holle
Dawn Marshall
Alexis Theime
Anne-Laure Savoye
Boston Univ.: Thomas Keple

Duke Human Vaccine Institute
S. Munir Alam
Ken Cronin
Guido Ferrari
Bart Haynes
David Kordys
Larry Liao
David Montefiori
Sam McMillan
Jamie Peacock
David Pickup
Justin Pollara
Shaunna Shen
Nezzie Smith
Herman Staats
Amanda Stemke
Nathan Vandergrift

University of North Carolina, Chapel Hill
De Paris Lab
Christian Agosto-Burgos
Neelima Choudhary
Alan D. Curtis
Bonnie Phillips
Jennifer Rodriguez-Nieves
Ryan Tuck

University of California, Davis
Koen Van Rompay
Amir Ardesir
Irma Cazares
Miles Christensen
Raffi Dadain
Linda Hirst
Wilhelm von Morgenland
Jennifer Wantanabe

Staff of Colony Management, Research Services,
Clinical Laboratories, and Pathology

NCI/ Leidos: Jeff Lifson & lab
LSUHSC: Pam Kozlowski & lab

GSK
Clarisse Lorin
Marguerite Koutsoukos
Infant HIV vaccine trials collaborators

DHVI
Giny Fouda
Georgia Tomaras
Tony Moody
Bart Haynes
Larry Liao
David Montefiori
Justin Pollara
Guido Ferrari
Ashley Trama
Erin McGuire
Erika Kunz
Josh Eudailey
Dawn Jones Marshall
Holly Jakubowski
David Martinez

IMPAACT
Coleen Cunningham
Elizabeth McFarland
William Borkowsky
Petronella Muresan

SCHARP
Youyi Fong

GSK
Clarisse Lorin
Marguerite Koutsoukos

Sanofi
Sanjay Phogat

HVTN
Julie McElrath
Glenda Gray
Georgia Tomaras

PACTG 230 and AVEG 201 participants and the research teams who contributed to these studies
Acknowledgements and funding

- National Institute of Allergy and Infectious Diseases (NIAID)
- National Institutes of Child Health and Development (NICHD)
- Division of AIDS (DAIDS)
- U.S. Department of Health and Human Services (HHS)
- Duke Office of Clinical Research (DOCR)
- Duke School of Medicine
- Duke Human Vaccine Institute
- UNC School of Medicine
- UC Davis California National Primate Center
- Duke CFAR small grant (NIH/NIAID 2P30 AI064518-07)
- NIH/NICHD (R03 HD072796-01A1)
- CTSA KL2 (KL2TR001115) to GF
- HIV Vaccine Trial network (5U01 AI46725) to GT
- Duke Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) #UM1-AI100645-03
- NIH/NIAID R01 (R01AI122991) to YF

Maternal and Infant Immunization to Eliminate Breast Milk Transmission of HIV-1 (1P01A117915-01)

IMPAACT network (U01 AI068632)