Oral microbiota in relation to HIV infection and oral infection in perinatally HIV-infected adolescents

Bruce J. Paster

Jacqueline R. Starr Barbara Moscicki
Kyu Ha Lee Russell Van Dyke
Lina Faller Mark Ryder

Caroline Shiboski TJ Yao

2nd Int'l Workshop on Microbiome in HIV Pathogenesis, Treatment and Prevention

November 18, 2016
Today’s discussion

• Oral microbiome—some background
• Do the oral microbiota differ in perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) adolescents?
• Do disease-associated microorganisms differ in PHIV vs. PHEU?
Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH)

Courtesy Jessica Mark Welsh & Gary Borisy
50-100 billion oral bacteria/person
At least 50 km (30 miles)
Swallow millions of bacteria per day
Worldwide, up to 1×10^{20} oral bacteria
10 to 50 tons
Fill a large swimming pool
More bacterial cells (10^{14}) than human cells (10^{13})
The Oral Microbiome

• ~700 predominant species
• So what!
• <31% have not yet been cultivated
• Specific species associated with health and disease
• Site-specificity and subject-specificity
• www.homd.org; Human Oral Microbiome Database
• Whole genome sequences for 400 taxa
• Easily accessible
• May herald oral and systemic disease
• “More complex than previously believed”
Pediatric HIV/AIDS Cohort AMP Study (PHACS)

- A longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) adolescents
- Adolescent Master Protocol (AMP): Oral Disease and Type of Antiretroviral Therapy among PHIV Youth
- Goal—to examine the association between oral disease and combination antiretroviral therapy (cART) regimen among PHIV
- Clinical Results
 - cART was successful at controlling opportunistic (mucosal) infections
 - High prevalence of gingivitis and periodontal disease, but little difference between PHIV and PHEU
 - PHIV had more caries than PHEU
Specific aims-oral microbiome

1. Do the oral microbiota differ in PHIV vs PHEU?
 • What effect does HIV have on the oral microbial composition?

2. Do disease-associated microorganisms differ in PHIV vs. PHEU?
 • E.g., *S. mutans* or other caries-associated species in both PHIV and PHEU?
 • E.g., *P. gingivalis* and other periodontitis-associated species in both PHIV and PHEU?
Background

Antiretroviral therapy

- HIV infection
- Host immune suppression
- Altered oral microbiome

Influence HIV clinical course
Sampling and processing

- Excluded subjects who had taken antibiotics within three months of sampling
- 2 types of samples
 - Pooled subgingival plaque (n=289)—2 mesial buccal sites
 - Throat wash expectorant (n=296)
- Extracted DNA
- 16S rDNA NGS sequencing (MiSeq)—V3-V4 region
- Compared levels of oral microbiota
Identification of bacterial species & genera

MiSeq 441 bp, V3-V4 region,
~50,000 reads/sample

~600 ProbeSeq species-level targets

~129 genus-level targets

Excluded low abundance taxa

Estimated diversity
Regression analysis:
Levels of microbiota in PHIV versus PHEU

"Exposure": HIV infection

"Outcome": Oral dysbiosis

- Zero-inflated negative binomial regression
- Multiple univariate models
- Adjusted for total counts, age
- Controlled FDR (B-H)
Are the same species or genera associated with caries or perio in PHIV versus PHEU?

- Logistic regression model
- Outcome is caries OR periodontitis
- Interaction term between HIV and microbiota
- Adjusted for total counts, age
- Controlled FDR (B-H)
Conclusions and future studies

• PHIV versus PHEU?
 – Many taxa differed in PHIV vs PHEU
 – PHIV microbiome seemed less diverse
 – PHIV possibly fewer “health”-associated taxa
 • Fewer *Corynebacterium, Rothia, Actinomyces*
 – HIV-infection, or its treatment, likely contributes to oral dysbiosis
• Oral disease-associated microorganisms differ?
 – No difference between PHIV and PHEU, i.e., no taxa met significance threshold level
• Future studies
 – Higher n’s, e.g., effect modification analyses underpowered
 – Sampling of specific disease sites
 – Compare with never been exposed to HIV
 – Metatranscriptomics and other ‘omics
Acknowledgments

PHACS is funded by:

NIH National Institutes of Health

under cooperative agreements HD052104 (PHACS Coordinating Center, Tulane University School of Medicine) and HD052102 (PHACS Data and Operations Center, Harvard School of Public Health).

We thank the study participants, clinical sites, PHACS Community Advisory Board, Frontier Science & Technology Research Foundation, and Westat.