In Silico Pharmacokinetic/Pharmacodynamic Simulation Of Long Acting Tenofovir Injectable Formulation For Pre-exposure Prophylaxis Strategies

Paul Curley, Darren Moss, Rajith K R Rajoli, James Hobson, Caren L. Freel Meyers, Charles Flexner, Steve Rannard, Andrew Owen and Marco Siccardi
Introduction

• PrEP offers a promising strategy to reduction of HIV acquisition

• 18 studies investigating PrEP in various high risk populations
 – >70% efficacy (vs placebo) with no increase in adverse events*

• iPRESX study demonstrated 44% efficacy**
 – When accounting for detectable drug, >90% efficacy

*Fonner et al 2016, **Anderson et al 2012,
Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV

Table 3 Prediction of the dose and release rate of a single intramuscular injection of antiretrovirals

<table>
<thead>
<tr>
<th>Drug</th>
<th>Intramuscular dose (mg)</th>
<th>Release rate (h^{-1})</th>
<th>Weekly/ monthly</th>
<th>AUC (µg x h/mL)^{a}</th>
<th>C_{max} (ng/mL)^{a}</th>
<th>C_{trough} (ng/mL)^{a}</th>
<th>Cut-off limit (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenofovir</td>
<td>1,300</td>
<td>0.002</td>
<td>Monthly</td>
<td>52.2 ± 15.4</td>
<td>99.2 ± 28.6</td>
<td>43.8 ± 17.2</td>
<td>18 [2] (IC_{90})</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.008</td>
<td>Weekly</td>
<td>16.6 ± 7.1</td>
<td>155.6 ± 58.5</td>
<td>49.1 ± 23.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Validation and prediction of the intracellular concentration of emtricitabine triphosphate and tenofovir diphosphate

<table>
<thead>
<tr>
<th>Active drug</th>
<th>Intracellular C_{ss,avg} (fmol/10^6 cells)</th>
<th>Weekly/ monthly</th>
<th>Intramuscular prediction (fmol/10^6 cells)</th>
<th>Intracellular C_{trough} (fmol/10^6 cells)</th>
<th>Intracellular C_{max} (fmol/10^6 cells)</th>
<th>In vitro IC_{50} (fmol/10^6 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Simulated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir diphosphate</td>
<td>150.7 ± 92.9 [22]</td>
<td>156.5 ± 59.5</td>
<td>Monthly</td>
<td>154.2 ± 46.5</td>
<td>164.6 ± 49.3</td>
<td>150 [24]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weekly</td>
<td>163.0 ± 59.0</td>
<td>174.9 ± 62.8</td>
<td></td>
</tr>
</tbody>
</table>

C_{max} maximum concentration, C_{ss,avg} mean steady-state concentration, C_{trough} trough concentration at the end of the duration, IC_{50} 50% inhibitory concentration
• Predicted relationship between intracellular TFV-DP and extent of protection from HIV acquisition

- 50% - 3 fmol/10^6 cells (95% CI, <1-7)
- 90% - 16 fmol/10^6 cells (95% CI, 3-28)
- 99% - 33 fmol/10^6 cells (95% CI, 6-60)

Anderson et al 2012
• Predicted relationship between intracellular TFV-DP and extent of protection from HIV acquisition

50% - 3 fmol/10^6 cells (95% CI, <1-7)
90% - 16 fmol/10^6 cells (95% CI, 3-28)
99% - 33 fmol/10^6 cells (95% CI, 6-60)

• Aims
 – To assess the feasibility of long acting injectables of TFV
 – Identify dose and release rates for PrEP
Methods

\[TFV_{\text{plasma}} \quad V_{\text{max}} \quad K_{\text{in}} \quad K_{\text{m}} \quad K_{\text{out}} \]

Duwal et al. 2012
• PBPK Model
 – PK simulated in Matlab (R2013b)
 – Age, BMI and weight were used to allometrically scale organ weights and cardiac output
 – Physicochemical properties, in vitro apparent permeability, in vitro intrinsic clearance and cytochrome P450 induction were obtained from the literature.

• TFV Validation (Oral TDF)
 – 500 patients (18-60 years)
 – Simulation of oral 300mg OD
 – 30 Days
Methods

• TDF LA Simulations
 – Screen of 100 patients (18-60 years)
 – Simulation of single injection covering 1 and 3 month
 – Doses 500, 750, 1000 and 1250mg
 – Release rates ranged from 0.0005 to 0.002 (h\(^{-1}\))

• Candidate Simulation
 – 500 patients (18-60 years)
 – Monthly injection of 750mg, 0.002h\(^{-1}\)
 – Quarterly injection of 1000mg, 0.001h\(^{-1}\)
Results

- PK Model Validation using results from orally administered TDF
 - 300mg once daily
 - 100 patients
 - 30 days

<table>
<thead>
<tr>
<th></th>
<th>C_{max} (ng/mL)</th>
<th>C_{min} (ng/mL)</th>
<th>AUC_{24} (ngxh/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Clinical</td>
<td>326 (36.6%)</td>
<td>64.4 (39.4%)</td>
<td>3324 (41.2%)</td>
</tr>
<tr>
<td>Simulated</td>
<td>418 (21.1%)</td>
<td>52.2 (44.7%)</td>
<td>4637 (21.6 %)</td>
</tr>
</tbody>
</table>

VIREAD. Gilead Sciences; 2014
Results

- **Monthly Injection**
 - 750mg, 0.002h⁻¹

<table>
<thead>
<tr>
<th></th>
<th>Plasma Cmax (ng/ml)</th>
<th>Plasma Cmin (ng/ml)</th>
<th>Plasma AUC (µg x h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128.3 (56.37)</td>
<td>34.7 (18.08)</td>
<td>49.0 (24.67)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intracellular Cmax (fmol/10⁶ cells)</th>
<th>Intracellular Cmin (fmol/10⁶ cells, 2 Days)</th>
<th>Intracellular Cmin (fmol/10⁶ cells, 30 Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>163.9 (65.09)</td>
<td>45.9 (16.00)</td>
<td>144.9 (58.74)</td>
</tr>
</tbody>
</table>
Results

• Monthly Injection
 – 750mg, 0.002h⁻¹

<table>
<thead>
<tr>
<th>1 month</th>
<th>Intracelluar Cmin (2 Days)</th>
<th>Intracelluar Cmin (30 Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Reduction (HIV-1)</td>
<td>>99</td>
<td>100</td>
</tr>
<tr>
<td>90% Reduction (HIV-1)</td>
<td>97.2</td>
<td>>99</td>
</tr>
<tr>
<td>99% Reduction (HIV-1)</td>
<td>78.8</td>
<td>98.6</td>
</tr>
</tbody>
</table>
Results

- Quarterly Injection
 - 1000mg, 0.001h⁻¹

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Cmax (ng/ml)</td>
<td>88.8 (40.11)</td>
<td></td>
</tr>
<tr>
<td>Plasma Cmin (ng/ml)</td>
<td>10.5 (4.08)</td>
<td></td>
</tr>
<tr>
<td>Plasma AUC (µg x h/mL)</td>
<td>83.1 (40.41)</td>
<td></td>
</tr>
<tr>
<td>Intracellular Cmax (fmol/10⁶ cells)</td>
<td>157.9 (65.08)</td>
<td></td>
</tr>
<tr>
<td>Intracellular Cmin (fmol/10⁶ cells, 2 Days)</td>
<td>40.7 (14.48)</td>
<td></td>
</tr>
<tr>
<td>Intracellular Cmin (fmol/10⁶ cells, 90 Days)</td>
<td>68.5 (27.15)</td>
<td></td>
</tr>
</tbody>
</table>
Results

- Quarterly Injection
 - 1000mg, 0.001h\(^{-1}\)

<table>
<thead>
<tr>
<th>3 months</th>
<th>Intracellular Cmin (2 Days)</th>
<th>Intracellular Cmin (90 Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Reduction (HIV-1)</td>
<td>>99</td>
<td>100</td>
</tr>
<tr>
<td>90% Reduction (HIV-1)</td>
<td>95.8</td>
<td>98.8</td>
</tr>
<tr>
<td>99% Reduction (HIV-1)</td>
<td>69.6</td>
<td>91.6</td>
</tr>
</tbody>
</table>
Limitations

- The simulation of PreP PD assumed that the TFV distribution into key tissues and mucosa is comparable between the traditional oral formulations and intramuscular injections.

- Formulation specific factors not accounted for.

- Concentration cut-offs used were those generated in combination with emtricitabine and are likely to be different for monotherapy.
Discussion

• The pharmacokinetics of TFV following intramuscular injection were predicted using a validated *in silico* modelling approach.

• Simulations indicate sustained concentrations of TFV following monthly and quarterly injections.

• TFV may be a suitable candidate for LA-PrEP, assuming challenges in formulation of LA-TDF can be met.

• These data may be useful to inform development of TDF LA PrEP.
Discussion

Formulation → In Vitro → Pre-clinical In Vivo → Clinical Translation

PBPK
Acknowledgements

University of Liverpool

Pharmacology
Andrew Owen
Marco Siccardi
David Back
Saye Khoo
Neill Liptrott
Lee Tatham
Darren Moss
Owain Roberts
Sharon Murphy
Rajith Kumar Reddy Rajoli
Adeniyi Olagunju
Rohan Gurjar
Chris David
Ana Jimenez-Valverde

Christina Chan
Louise Tidbury
Megan Neary
Rana Abutaima
Hannah Kinvig
Justin Chiong
Laura Dickinson
Alessandro Schipani
Helen Reynolds
Kay Seden
Henry Pertinez
Sara Gibbons

Chemistry
Steve Rannard
James Hobson

Johns Hopkins University

Charles Flexner
Caren L. Freel Meyers
David Meyers
Amer Al-khouja

Funded by 1R01AI114405-01 grant from the National Institutes of Health