Timing of the postpartum curve in pharmacokinetic studies in pregnancy should not be too early

Angela Colbers, Stein Schalkwijk, Deborah Konopnicki, David Hawkins, Carmen Hidalgo Tenorio, José Moltó, Graham Taylor, Katharina Weizsäcker, Marchina van der Ende, David Burger, on behalf of the PANNA network
• A European clinical pharmacology network to investigate the pharmacokinetics of newly developed antiretroviral agents in HIV-infected pregnant women

• Pregnancy may induce changes in PK of ARVs

• Possibly sub-therapeutic levels in pregnancy as a result
Outline PANNA study protocol

General study protocol, not specified per drug, 17 ARVs

PK curve 3rd trimester
Appr wk 33 gestational age

PK curve postpartum
at least 2 weeks after delivery
How does pregnancy affect pharmacokinetics?

- **Total body water**: increased
- **Plasma volume**: increased
- **Total body fat**: increased
- **Albumin conc.**: decreased
- **GFR**: increased
- **gastric pH**: increased
- **gastric emptying and intestinal motility**: decreased
- **CYP3A4 activity**: increased
- **CYP2D6 activity**: increased
- **CYP2C19 activity**: decreased

*Anderson, Clin Pharmacokinetics, 2005
Abduljalil, Clin Pharmacokin., 2012*
Physiological explanation

http://www.medicine.mcgill.ca/physio/vlab/other_exps/endo/reprod_horm.htm
Physiological explanation

Progesterone and estradiol cause

Inhibition of enzymes

Induction of enzymes

Induction of transporters – P-gp

Both AUC and C_{max} can be affected
Research question

Post-partum curve is used as the control curve: normal, non-pregnant situation

Is this a valid assumption?

When should an increased dose in pregnancy be reduced?

PK curve at least 2 weeks after delivery
Methods

Compounds for which lower exposure in pregnancy was observed

AUC GMR (90% CI) third trimester/postpartum

- maraviroc (n=15)
- raltegravir (n=17)
- ritonavir (DRV QD)
- ritonavir (DRV BID)
- ritonavir (ATV)
- darunavir QD (n=9)
- darunavir BID (n=5)
- atazanavir (n=26)
- tenofovir (n=27)
- emtricitabine (n=24)
Methods

Normalise over different agents

Postpartum AUC and C_{max} values were compared to accepted non-pregnant population AUC and C_{max} for the specific agent

Ratio postpartum / population mean:

\[
\frac{\text{Individual postpartum AUC}}{\text{Population AUC for that compound/regimen}}
\]
Methods

The time-point of the postpartum curve was grouped per week. >8 weeks postpartum pooled

Kruskal Wallis test with weeks postpartum as grouping variable was used for statistical analysis.
Results

157 postpartum curves, from 67 unique patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at delivery (years)</td>
<td>32 (19-45)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>60%</td>
</tr>
<tr>
<td>White</td>
<td>39%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
<tr>
<td>Weight at postpartum (kg)</td>
<td>71 (43-126)</td>
</tr>
<tr>
<td>Weight at 3(^{rd}) trimester (kg)</td>
<td>76 (48-139)</td>
</tr>
</tbody>
</table>
Results

Number of curves

Weeks postpartum

Number of curves

- NRTI
- PI
- II
- EI
Results

AUC relative to reference

Kruskall Wallis
p = 0.337
Results

C_{max} relative to reference

Kruskall Wallis

$p = 0.227$
Conclusion

- No time effect was observed for postpartum curves taken at least 3 weeks post delivery

- Postpartum curves from at least 3 weeks post delivery were comparable to non-pregnant population means

- Dose reductions (after dose increase in pregnancy) should be considered from > 2 weeks post delivery onwards
THANKS TO

Participants in PANNA study

Investigators of the PANNA study

Financial support

• For PANNA: NEAT/PENTA; Merck; BMS; Janssen, ViiVHealthcare

Website: panna
www.pannastudy.com