The effect of antiretroviral naïve HIV-1 infection on the ability of autologous Natural Killer cells to produce IFNγ upon exposure to *Plasmodium falciparum*-infected Erythrocytes

Carole stéphanie SAKE NGANE

Msc in Biochemistry, PhD student in Biochemistry, Option Microbiology/UYI

Laboratory of Microbiology and immunology, The Chantal BIYA International Reference Center for research on HIV/AIDS (CIRCB)
INTRODUCTION

1- Regions of intense *Plasmodium* species transmission

2- High prevalence of HIV infection (WHO, 2015)

ARV naïve HIV-1 infected people living within these regions are repeatedly exposed to malaria.

Production of IFNγ

Direct lysis of iRBC

P. Falciparum infected red blood cells (iRBC)

Natural Killer cell

HIV infection
Participants
- 15 ARV naïve HIV-1 infected participants and 15 Healthy controls aged between 21 to 65 years were included in this study.
- 03 malaria infected people.

Methods
1- iRBC were enrichment and culture (for 72 hours)
2- NK cells purification using Peripheral blood mononuclear cells
3- Purified NK cells were co-cultured with the iRBC for 24 hours
4- NK cells IFNy production was measured by multiparametric flowcytometry using BD FACScanto II machine and data were analyzed by flowjo 10 tristar. SPSS and graphpad prism 5 software were used for statistical analysis
RESULTS

Gating strategy

Figure A: Flowjo analysis for NK cells IFNγ production after co-culture with Red Blood Cells

- Data show a significant reduction (p=0.02) in IFNγ production by NK cells from antiretroviral naive HIV-1 infected people after co-culture with *plasmodium falciparum* infected RBCs.
- NK cells IFNγ production clearly indicates that this response was iRBC dependent.

Figure B: Production of IFNγ by NK cells before and after coculture with plasmodium infected red blood cells (iRBC) and uninfected red blood cells (uRBC).
RESULTS

Figure C: Impact of HIV Viral Load on Natural Killer cells IFNγ production after coculture with iRBC

IFNγ production by NK cells from untreated HIV-1 infected participants correlated inversely with the plasmatic viral load ($r = -0.9; p<0.05$).
CONCLUSION

Thus antiretroviral naïve HIV-1 infection can dampen NK cell mediated immunity to Plasmodium falciparum infection in malaria intense regions. This could in effect escalate morbidity and mortality in people chronically infected with HIV-1.