Current Status of Ebola Vaccines and Treatments

9th INTEREST Workshop 2015
May 5, 2015

Peter Kilmarx, CDC
On behalf of:
Dr. Dicky Akanmori (WHO) and
Dr. Cliff Lane (NIH)

Disclaimer: The views expressed herein are solely the responsibility of the authors and do not necessarily represent the official views of the CDC.
Treatment and Vaccines for Ebola Virus Infection

- **Current Status of Vaccines**
 - 15 open studies on clinical trials.gov

- **Current Status of Treatments**
 - 8 open studies on clinical trials.gov

- Challenges

- Opportunities
Current Status of Vaccines

- Lead candidates
 - Recombinant VSV (rVSV)
 - Recombinant adenoviruses
- Ongoing studies
 - Classic, placebo controlled RCT (Liberia)
 - Immediate vs. deferred RCT (Sierra Leone)
 - Ring vaccination (Guinea)
Patients who Survive Acute Ebola virus Infection do so with a Disappearance of Circulating Virus and What Appears to be a State of Protective Immunity
Unfortunately, no Clear Correlate of that Protective Immunity has been Established Making Vaccine Development a Significant Challenge and Emphasizes the value of a Clinical Endpoint Study
Most Advanced Investigational Candidate Ebola Virus Vaccines

- Recombinant Vesicular Stomatitis Virus
 - Replication competent
 - Local and systemic reactions in approximately 50%
 - Transient arthralgia in approximately 30% with one site reporting a series of cases of reactive arthritis

- Recombinant Chimpanzee Adenovirus 3
 - Not replication competent
 - Local and systemic reactions in approximately 50%
 - Prolongation of PTT
Prevail Study Design Overview

https://clinicaltrials.gov/ct2/show/NCT02344407

 Individuals at Risk for EVD (HCW, Contact Tracers, Burial Teams, Individuals living in outbreak area etc.)

- **rVSVΔG-ZEBOV Vaccine** (N = 9,000)
- **ChAd3-EBO Z Vaccine** (N = 9,000)
- **Saline** (N = 9,000)

Labs at Baseline
- Week 1
- Week 4 (n=600)

Weekly follow-up x1; then monthly follow-up through event driven closing date
Associated Press
February 2, 2015

Ebola Vaccines Testing Starts in Liberia

- Phase II/III trial; goal is 27,000 volunteers
- cAd3-EBOZ vs. rVSV-EBOV vs. placebo
Screening Volunteers for Participation in the Prevail Vaccine Study at Redemption Hospital
Additional Vaccine Candidates and Designs

- Immediate vs. deferred step-wedge study of rVSV (Sierra Leone MoH/CDC/WHO) - recruiting
 https://clinicaltrials.gov/ct2/show/NCT02378753
- Immediate vs. deferred ring vaccination study of rVSV (Guinea; WHO)
- Ad26 prime / MVA boost (Johnson/Johnson + Bavarian Nordic)
- Multiple other platforms including rabies virus and parainfluenza virus
Current Status of Treatment

- Supportive Care
 - Fluid and Electrolyte replacement
 - Ventilator Support
 - Renal Replacement Therapy
- Anti-viral strategies
 - Antibody based therapies
 - Small molecule inhibitors
 - Anti-sense molecules
Therapeutic Targets in the Ebola Life Cycle

Neutralizing Antibodies
- Convalescent serum
- Monoclonals

Nucleos/tide Analogues
- Brincidofovir
- Favipiravir
- BCX 4430

Antibody-dependent Cellular Cytotoxicity
- Convalescent serum
- Monoclonals

Anti-sense mRNA-binding molecules
- Tekmira
- Sarepta

Adapted from White & Schonberg, Nat Rev Micro (2012) 10:317
ZMapp Monoclonal Antibody Candidate Treatment

ZMapp Structure by Electron Microscopy

Ebola Virus Glycoprotein GP

Non-Human Primate Challenge

![Graph showing survival rates]

ZMapp, other mAbs, Convalescent Plasma & Whole Blood

- ZMapp Trial ongoing – no new cases
- Chinese mAb – yet to enter clinical Trials
- Convalescence blood trials underway
- None of these trials likely to provide decisive efficacy data
Due to the Improvements in Supportive Care and Variability in Disease Presentation, Historical Controls Have the Potential to be Misleading.
Changing Mortality for Ebola Virus Infection Over Time

<table>
<thead>
<tr>
<th>Date</th>
<th>N</th>
<th>Site</th>
<th>Mortality</th>
<th>Change from Prior Interval</th>
<th>Change from May-June</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-June, 2014*</td>
<td>106</td>
<td>Kenema, Sierra Leone</td>
<td>74%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sept.-Oct., 2014**</td>
<td>151</td>
<td>Freetown, Sierra Leone</td>
<td>48%</td>
<td>-35%</td>
<td>-35%</td>
</tr>
<tr>
<td>Oct.-Nov., 2014**</td>
<td>126</td>
<td>Freetown, Sierra Leone</td>
<td>32%</td>
<td>-33%</td>
<td>-55%</td>
</tr>
<tr>
<td>Nov.-Dec., 2014**</td>
<td>304</td>
<td>Freetown, Sierra Leone</td>
<td>23%</td>
<td>-28%</td>
<td>-69%</td>
</tr>
</tbody>
</table>

Challenges (1)

- Lack of a robust health care system
- Lack of a established institutions (FDA, IRBs, academic centers) for conducting programs of human subjects research
- Limited workforce with appropriate training
- A rapidly evolving epidemic from the perspectives of incidence and medical management
Challenges (2)

- Multiple entities working in environments with limited “bandwidth” vying for the same limited resources.
- A urgent desire to do “something” potentially taking precedence over doing things the right way.
- Media distortions
- Public health interpretation of results, how to use a safe, immunogenic vaccine with NHP efficacy data?
Opportunities

- To build clinical research programs in accordance with high scientific, operational and ethical standards and by extension enhance the healthcare systems they support.

- To do things in a rigorous fashion from the beginning to insure that we leave this epidemic with more knowledge than we had when we entered it.

- To coordinate activities among the various countries and agencies working in West Africa to make sure that the most scientifically sound studies with the greatest potential impact are given priority.