Model based evaluation of higher doses of rifampicin using a semi-mechanistic model incorporating auto-induction and saturation of hepatic extraction

Maxwell Chirehwa¹, Roxana Rustomjee², Thuli Mthiyane³, Philip Onyebujoh⁴, Peter Smith¹, Helen McIlreron¹, Paolo Denti¹

¹ Division of Clinical Pharmacology, University of Cape Town, South Africa;
² Strategic Health Innovation Partnerships, South African Medical Research Council, Cape Town, South Africa;
³ TB Research Unit: Clinical and Biomedical, South African Medical Research Council, Durban, South Africa;
⁴ Intercountry Support Team for East and Southern Africa, World Health Organization, Regional Office for Africa, Harare, Zimbabwe
Rifampicin is the backbone of 1st line TB treatment

Recent reports suggest increasing the current dose (Boeree et al. 2015)

Metabolism by arylacetamide deacetylase (AADAC)
• a liver esterase (Nakajima et al. 2011)

Auto-induction:
• potent inducer of PXR-mediated pathways, increases its own clearance (and that of other drugs).
• auto-induction has been reported to take about a week (Smythe et al. 2013)

Dose-exposure non-linearity:
• seemingly saturation of metabolism (Acocella, 1978)
Changes in rifampicin exposure

Rifampicin exposure by weight-band (# of tablets), and day of treatment (McIlneron et al. 2012) Patients with lower weight and men were found to have lower exposure.
Aims

To quantify rifampicin auto-induction
 • Progression (how long?)
 • Extent (how much?)

To explain the exposure differences between weight-bands, and sex

To characterise dose-exposure non linearity
 • Hepatic extraction (saturation?)

To explore change in rifampicin exposure when doses are increased beyond the currently recommended dose of 10 mg/kg (range 8-12 mg/kg)
Data and Methods

61 South African, HIV+, TB patients (33 females and 28 males)

RIF + INH + PZA + ETH given as FDC once daily in the morning (mostly 5 days per week, 10 patients on 7 days p. w.)

Samples were taken on day 0, 7, 14, and 28 at 0, 1, 2, 4, 6, 8, 12 hours after dose

Doses adjusted according to body weight:

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th><37.9</th>
<th>38-54.9</th>
<th>55-69.9</th>
<th>>70</th>
</tr>
</thead>
<tbody>
<tr>
<td># Tablets</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>RIF (mg)</td>
<td>300</td>
<td>450</td>
<td>600</td>
<td>750</td>
</tr>
</tbody>
</table>

Data analysed with NONMEM VII and FOCE-I
Structural Model

Hepatic extraction was described using a well-stirred liver model with saturation characterised using Michaelis-Menten kinetics (Gordi et al. 2005).

Changes in the PK parameters due to auto-induction were investigated.

Allometric scaling to adjust CL & V parameters for body size, using different size predictors.
Saturable Hepatic Metabolism

Well-stirred liver model:
Hepatic extraction \((E_H) \) depends on:
- hepatic plasma flow \((Q_H) \)
- enzymatic activity \((CL_{int}) \)
- protein binding \((f_u) \)

\[
E_H = \frac{CL_{int} \cdot f_u}{CL_{int} \cdot f_u + Q_H}
\]

\[
CL_H = Q_H \cdot E_H
\]

\(CL_{int} \) was saturable, depending on hepatic concentration \((C_H) \)

\[
CL_{int} = \frac{CL_{int,max} \cdot K_m}{C_H + K_m}
\]

Parameter values were fixed
\(f_u = 20\% \quad Q_H = 50 \text{ L/h} \quad V_H = 1 \text{ L} \)
Auto-induction

Maximal Intrinsic CL vs days on treatment

\[CL_{int,max} = CL_{int,max}^0 + (CL_{int,max}^{SS} - CL_{int,max}^0) \cdot \left(1 - e^{-\left(\frac{\ln(2)}{t_{1/2\,ind}} \right) \cdot t} \right) \]
Individual CL_{int} and V of the central compartment were scaled using each subject’s fat-free body mass (FFM). Same for Q_H and V_H.

Some women in the largest weight-band had FFM and thus CL_{int} no larger than much smaller patients...

Relatively over-dosed.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value (90% CI)</th>
<th>BSV(%) (90% CI)</th>
<th>BOV(%) (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CL^0_{int,max}$ [L/h]</td>
<td>93.2 (83.7-108)</td>
<td>22.5 (19.1-26.1)</td>
<td>21.9 (18.3-25.7)</td>
</tr>
<tr>
<td>$CL^{SS}_{int,max}$ [L/h]</td>
<td>176 (159-210)</td>
<td>22.5 (19.1-26.1)</td>
<td>21.9 (18.3-25.7)</td>
</tr>
<tr>
<td>$t_{1/2ind}$ [days]</td>
<td>4.5 (4.1-4.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_m [mg/L]</td>
<td>3.35 (3.00-3.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V [L]</td>
<td>50.1 (47.7-52.8)</td>
<td>14.2 (11.5-16.2)</td>
<td></td>
</tr>
<tr>
<td>Pre-Hepatic Bioavailability</td>
<td>1 FIXED</td>
<td></td>
<td>11.0 (9.6-13.6)</td>
</tr>
<tr>
<td>K_a [h$^{-1}$]</td>
<td>1.96 (1.7-2.2)</td>
<td></td>
<td>81.2 (72.2-88.4)</td>
</tr>
<tr>
<td>MTT (Abs Mean Transit Time) [h]</td>
<td>0.71 (0.67-0.78)</td>
<td></td>
<td>62.7 (57.0-75.4)</td>
</tr>
<tr>
<td>NN (Number of trans cmpts)</td>
<td>19.3 (18.1-22.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional error (%)</td>
<td>10.8 (10.0-128)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive error [mg/L]</td>
<td>0.064 (0.059-0.07)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CL and V allometrically scaled and reported for the typical fat-free-mass subject (42.2 kg) 90% CI obtained using non-parametric bootstrap
Rifampicin PK - Results

Weight/dose effect

Dose-exposure non-proportionality
Rifampicin PK - Results

Figure 2. Distribution of exposure to rifampin (AUC, 0–24 h) at Day 14 in the various rifampin dosing groups. The reference line mimics a linear relationship. AUC = area under the plasma concentration–time curve; C_{max} = peak plasma concentration.

Panacea Trial - Boeree et al. 2015
Rifampicin PK - Results

When rescaling to the average exposures in Panacea at 10 mg/kg...

Relative change in SS AUC\textsubscript{0-24} from 10 mg/kg dose

- AUC\textsubscript{0-24} (Simulated exposure)
- Panacea Trial
- AUC\textsubscript{0-24} (Linear dose exposure)

Relative change in C\textsubscript{max} from 10 mg/kg dose

- C\textsubscript{max} (Simulated exposure)
- Panacea Trial
- C\textsubscript{max} (Linear dose exposure)
Conclusions

Rifampicin PK was characterised using a well-stirred liver model with saturable metabolism, following Michaelis-Menten kinetics.

We quantified rifampicin auto-induction: progression and extent

- Maximum intrinsic clearance almost doubled (1.9 fold) from first dose to steady state (93 to 176)
- 50% effect is reached in 4.5 days, full induction (~97%) about three weeks

The best size predictor for CL is fat-free mass, which should be used to optimise dose instead of total body weight.

The predictions from the model closely mirror recent reports of high-dose rifampicin PK.

Further study is necessary to investigate the effect of dose administered on duration and extent of auto-induction.
Acknowledgments

My colleagues at **UCT Pharmacometrics**
The **UCT Pharmacology Lab** for performing the assay
The patients and sponsors (WHO and TDR) of the TB-HAART study
EDCTP and S. African NRF for PhD fellowship
Novartis Pharma for their support of the development of pharmacometrics skills in Africa

Expert Medical Events for sponsoring my attendance and airfare

Maxwell Chirehwa
References

Backup Slides
Fat free mass (FFM) was estimated from height (HT) and weight (WT) and sex using the formula:

\[
FFM = \frac{\text{WHS}_{\text{max}} \cdot HT^2 \cdot WT}{\text{WHS}_{50} \cdot HT^2 + WT}
\]

\text{WHS}_{\text{max}} \text{ is } 42.92 \text{ kg/m}^2 \text{ and } \text{WHS}_{50} \text{ is } 30.93 \text{ kg/m}^2 \text{ in men, and } 37.99 \text{ kg/m}^2 \text{ and } 35.98 \text{ kg/m}^2, \text{ in women.}
Allometric scaling

Individual CL_{int_i} and V_i of the central compartment were scaled using each subject’s fat-free body mass (FFM). Similarly Q_{H_i} and V_{H_i}

$$CL_{int_i} = CL_{int_ref} \cdot \left(\frac{FFM_i}{FFM_{ref}} \right)^{0.75}$$

$$Q_{H_i} = Q_{H_ref} \cdot \left(\frac{FFM_i}{FFM_{ref}} \right)^{0.75}$$

$$V_i = V_{ref} \cdot \left(\frac{FFM_i}{FFM_{ref}} \right)^{1}$$

$$V_{H_i} = V_{H_ref} \cdot \left(\frac{FFM_i}{FFM_{ref}} \right)^{1}$$