Penetration of rifampin and rifapentine into diseased lung in the rabbit cavity pulmonary disease model of TB

Dalin Rifat, Ph.D.

9-17-2015
Background

- Rifampin (RIF) and rifapentine (RPT) are potent sterilizing drugs.

- In mouse models daily RPT can cure TB in 3 months.

- In clinical trials, substitution of 10 mg/kg of daily RIF with 10 mg/kg of daily RPT is not more efficacious; higher doses of RPT seem to improve microbiologic outcomes.

- There is little information about the penetration of rifamycins into infected areas in humans.

- The rabbit cavitary pulmonary TB model has human-like TB pathology (necrotic granulomas and cavities) and may provide some insights into drug distribution of anti-TB drugs in humans.
Rabbit cavitary model

Aerosol infection

8 rabbits

10^5 - 10^6 CFU/ml of Mtb H37Rv aerosol exposure

sacrifice and necropsy (week 17)

<table>
<thead>
<tr>
<th>baseline</th>
<th>week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>......</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bronchoscope infection

Injection of Mtb:H37Rv
1-0.3ml
10^5 - 10^7 CFU/ml

Cavitary lesion
Experimental design

Drug delivery:

[Diagram showing drug delivery process]

IV infusion

- RIF: 5mg/ml
- RPT: 10mg/ml
- In vehicle solution

Plasma

Uninvolved lung tissue (UI)

Tissue surrounding lesion (SL)

Cellular lesion (LE)

Cavitary lesion wall (CAW)

Caseum (CAC)

Homogenate

70% methanol

LC/MS

MALDI-MSI
Optimizing experimental conditions: healthy rabbits

RIF in lung tissue

RPT in lung tissue

PK of RPT (30mg/kg) in plasma and lung tissue

- **C**\textsubscript{max} : 27µg/ml (0.5h)
- AUC\textsubscript{0-15} : 100 µg*h/ml
- T\textsubscript{1/2} : 4.5h

In human plasma PK of single dose of RPT (20mg/kg, oral administration)

- **C**\textsubscript{max} : 25µg/ml (5h)
- AUC\textsubscript{0-12} : 403µg*h/ml
- T\textsubscript{1/2} : 25.9 h

Penetration of single dose of **RIF** (10mg/kg) by LC/MS: rabbits with TB disease

Penetration of RIF in diseased lung

- UI: uninvolved lung tissue
- SL: tissue surrounding lesion
- LE: cellular lesion
- CAC: caseum from necrotic lesion

PK of RIF in plasma and diseased lung

- C_{max}: 17µg/ml
- AUC_{0-6}: 40 µg*h/ml
- $T_{1/2}$: 2h

In human plasma PK of single dose (10mg/kg, oral administration)

- C_{max}: 10.5µg/ml
- AUC_{0-12}: 57.5 µg*h/ml
- $T_{1/2}$: 3h

Clin Pharmacol Ther. 2012 May; 91(5):

doi:10.1038/clpt.2011.323
MALDI-MSI and H&E staining of lung tissue: single dose of RIF

2h

3h

6h

Necrotic lesion

Cellular lesion

Necrotic lesion
Penetration of single dose of **RPT** (30mg/kg) by LC/MS: rabbits with TB disease

Penetration of RPT in diseased lung

- **UI**: uninvolved lung tissue
- **SL**: tissue surrounding lesion
- **LE**: cellular lesion
- **CAW**: cavitary lesion (wall)
- **CAC**: cavitary lesion (caseum)

PK of RPT in plasma and diseased lung

- **C**$_{\text{max}}$: 50µg/ml
- **AUC**$_{0-6}$: 175µg*h/ml
- **T ½**: 4.5h
MALDI-MSI and H&E Staining of lung tissue: single dose of RPT

2h

3h

6h

cellular lesion

cavitary lesion

cavitary lesion
Penetration of multiple-dose of **RIF** (10mg/kg) by LC/MS: rabbits with TB disease

PK of RIF in plasma (M2h)

<table>
<thead>
<tr>
<th>Concentration of RIF (ng/ml)</th>
<th>First dose (30min)</th>
<th>Second dose (4h)</th>
<th>Third dose (2h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30min</td>
<td>5h</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>20000</td>
<td>30000</td>
</tr>
</tbody>
</table>

AUC \(0\text{-}12.5\text{h}: 241\mu g\text{*h/ml} \)

PK of RIF in plasma (M12h)

<table>
<thead>
<tr>
<th>Concentration of RIF (ng/ml)</th>
<th>First dose (30min)</th>
<th>Second dose (4h)</th>
<th>Third dose (2h)</th>
<th>Forth dose (12h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30min</td>
<td>4h</td>
<td>30min</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>45000</td>
<td>35000</td>
<td>25000</td>
</tr>
</tbody>
</table>

AUC \(0\text{-}26\text{h}: 431\mu g\text{*h/ml} \)

Penetration of RIF in different compartments of TB disease

<table>
<thead>
<tr>
<th>Concentration of RIF (ng/g)</th>
<th>M2h</th>
<th>M12h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In human plasma PK of multiple-dose (10mg/kg, oral administration, 14 days)

C\(_{\text{max}}\): 7.5\mu g/ml (5h)

AUC \(0\text{-}12\text{h}: 45.2\mu g\text{*h/ml} \)

T ½: 2.4 h

- **UI**: uninvolved lung tissue
- **SL**: tissue surrounding lesion
- **LE**: cellular lesion
- **CAW**: cavitary lesion (wall)
- **CAC**: cavitary lesion (caseum)
MALDI-MSI and H&E staining of lung tissue: multiple-dose of RIF

Uninvolved lung

Cavitary lesion (1)

Cavitary lesion (2)

Cellular lesion

Necrotic lesion
Penetration of multiple-dose of RPT (20mg/kg) by LC/MS: rabbits with TB disease

PK of RPT in plasma (M2h)

- **AUC** \(_{0-13}\): 494µg*·h/ml

PK of RPT in plasma (M12h)

- **AUC** \(_{0-23}\): 833µg*·h/ml

Penetration of RPT in different compartments of TB disease

- In human plasma PK of multiple-dose (20mg/kg, oral administration, 14 days)
 - \(C_{\text{max}}\): 34.1µg/ml (5h)
 - AUC \(_{0-12}\): 483 µg·h/ml
 - T \(\frac{1}{2}\): 16h

MALDI-MSI and H&E staining of lung tissue: multiple-dose of RPT

M2h
- Uninvolved lung
- Cavitary lesion (1)
- Cavitary lesion (2)

M12h
- Cellular lesion
- Necrotic lesion
Conclusions

• We have established the PK of IV RIF and IV RPT in rabbits; half-life of RPT is much shorter in rabbits than humans. Data can be used to determine human-equivalent dosing for subsequent single and multiple dose experiments.

• Penetration into granulomatous lesions was excellent for both RIF and RPT and drugs remained in this type of lesions longer than in healthy lung tissue.

• Penetration of RIF into caseum in necrotic or cavitary lesions was poor, but accumulation of RIF in caseum can be achieved by giving multiple-dose of RIF with longer exposure time, which is consistent with that in human necrotic caseum.

• RPT penetrated into caseum even poorer than RIF in comparison to their uninvolved lung tissue; multiple dosing with longer exposure time seemed not to improve penetration of RPT into caseum during the observation time, which remains to be confirmed in humans.

Brendan Prideaux1, et al. Nature medicine online 7 September 2015; doi:10.1038/nm.3937
Acknowledgements

JHU- Divisions of Clinical Pharmacology and Infectious Diseases
Dr. Kelly Dooley

JHU- Bishai laboratory (rabbit model)
Mike Urbanowski
Robyn Becker
Haidan Guo
Laurene Cheung
Brian Luna
Bill Bishai

JHU- Clinical Pharmacology Analytical Laboratory (tissue/plasma PK)
Teresa Parsons
Thuy Hoang
Mark Marzinke

JHU-Jain laboratory (PET imaging)
Mariah Klunk
Peter DeMarco
Alvaro Ordonez
Sanjay Jain

Rutgers (MALDI)
Brendan Prideaux
Veronique Dartois

UCSF (mathematical modeling)
Rada Savic, pharmacometrician

NIH/DAIDS
ACTG Novel Formulations Award