Virologic Outcomes of HIV-Infected Children Undergoing a Single-Class Drug Substitution from LPV/r- to EFV-Based cART: A retrospective cohort study.

1University of Cape Town, School of Public Health and Family Medicine, Cape Town, South Africa.

For the IeDEA-SA collaboration
Background

Early cART

Durable 1st line

Accessible 2nd line

PMTCT

Early cART
Background

LPV-r
- Better virologic suppression than NVP-based cART
- Tablet size
- Palatability
- Twice-daily dosing
- Storage requirements
- Drug-drug interactions
- Long term side-effects

EFV
- Effective
- Relatively cheap
- Easy to administer
- Daily dosing
- Reasonable long term side-effect profile
- Use in <36mo old not recommended
- High-level class resistance
2013:
WHO added the option to substitute LPV/r with an NNRTI in children with sustained virologic suppression

Main evidence:
NEVEREST 2 and 3
To compare outcomes of children commencing cART with LPV/r and substituting LPV/r with efavirenz once virologically suppressed and ≥36 months old (substitution group) with those remaining on LPV/r (stay group) in a routine clinical setting
Method

Retrospective cohort

Starting cART between 2003-2010

8 South African sites

SA NDOH guidelines
 - PI recommended 1st line <36mo irrespective of PMTCT

Clinician discretion to substitute LPV/r with EFV
Method

Substitution group

Stay group

First VL>400
Median follow-up time: **25.8mo** (15.1 – 34.2)

Median follow-up time: **24.4mo** (18.1 – 31.7)
Method

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution group</td>
<td>36</td>
</tr>
<tr>
<td>Stay group</td>
<td>42</td>
</tr>
<tr>
<td>Exclusions</td>
<td>654</td>
</tr>
</tbody>
</table>

N = 1084

First VL >400

n = 59

n = 1025

n = 654
Results

Comparison of groups at *initiation* of cART

<table>
<thead>
<tr>
<th></th>
<th>Stay</th>
<th>Substitution</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (months)</td>
<td>17.6</td>
<td>15.3</td>
<td>0.381</td>
</tr>
<tr>
<td>Median pre-cART CD4 %</td>
<td>13.9</td>
<td>13.0</td>
<td>0.571</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>-2.34</td>
<td>-2.56</td>
<td>0.130</td>
</tr>
<tr>
<td>WHO stage 3 or 4</td>
<td>89.9 %</td>
<td>80.8 %</td>
<td>0.157</td>
</tr>
<tr>
<td>HIV VL (log_{10} copies/ml)</td>
<td>5.69</td>
<td>5.51</td>
<td>0.708</td>
</tr>
</tbody>
</table>

Comparison of groups at *36 months of age*

<table>
<thead>
<tr>
<th></th>
<th>Stay</th>
<th>Substitution</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median CD4 %</td>
<td>28.9</td>
<td>29.4</td>
<td>0.751</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>-0.86</td>
<td>-0.32</td>
<td>0.074</td>
</tr>
<tr>
<td>HIV VL <400 copies/ml</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
</tbody>
</table>
Results

Comparison of groups at 42 months of age or date of substitution

<table>
<thead>
<tr>
<th></th>
<th>Stay</th>
<th>Substitution</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median CD4 %</td>
<td>29.6</td>
<td>28.5</td>
<td>0.562</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>-0.83</td>
<td>-0.58</td>
<td>0.420</td>
</tr>
<tr>
<td>≥ Viral blip</td>
<td>318 (48.6%)</td>
<td>10 (27.8%)</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Viral blip

an isolated VL >1000 copies/ml which subsequently returned to <400 copies/ml at the next measurement (conducted within 24 months) with no change in cART regimen
Factors associated with single-drug substitution

- **Favourable clinical response to cART**
 - adjusted OR 1.34 per 1 weight-for-age z-score increase, 95% CI 0.96 - 1.80
 - associated with undergoing a single-drug substitution

- **Viral blips**
 - adjusted OR 0.34, 95% CI 0.15 - 0.79
 - associated with **not** undergoing a single-drug substitution

- Immune recovery

- PMTCT exposure
Results

Primary outcomes after substitution

Incidence rate ratio of time to first VL >400 copies/ml:

1.03 (95% CI 0.43 to 2.08) in the substitution relative to the stay group

Cox regression model HR

Adjusted HR=1.43 (95% CI 0.62 - 3.32, p=0.401)
adjusted for other predictors of non-suppression
- WAZ at initiation of cART
- Duration on cART
- VL blip(s) prior to 36 months
in the substitution relative to the stay group
Secondary outcomes after substitution

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Stay (n=654)</th>
<th>Substitution (n=36)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died</td>
<td>3 (0.43)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TFO</td>
<td>278 (42.5)</td>
<td>9 (25.0)</td>
<td>0.039</td>
</tr>
<tr>
<td>LTFU</td>
<td>35 (5.4)</td>
<td>4 (11.1)</td>
<td>0.139</td>
</tr>
<tr>
<td>Virologic failure</td>
<td>64 (9.8)</td>
<td>2 (5.6)</td>
<td>0.565</td>
</tr>
<tr>
<td>Changed back to LPV/r</td>
<td>-</td>
<td>7 (19.4)</td>
<td>-</td>
</tr>
</tbody>
</table>
In this cohort, virologic outcomes of children suppressed on LPV/r-based cART and subsequently changed to EFV were no worse than of those remaining on LPV/r.

However, this cohort was not exposed to more than a single postpartum dose of NVP as infant prophylaxis.

Thus, in carefully selected children who have had no or only a sdNVP as PMTCT, this may be a virologically safe regimen-sparing and side-effect limiting simplification strategy.
Thanks to
All the children who participated as well as their caregivers
NicHD (National Institute of Child Health and Human Development)

NIAID

All the clinicians and data capturers at the IeDEA-SA collaboration sites:

○ In Cape Town, South Africa:
 University of Cape Town School of Public Health and Family Medicine and Department of Paediatrics
 Red Cross War Memorial Children's Hospital
 Khayelitsha ART Program
 Desmond Tutu HIV Centre and Guguletu ART Program
 University of Stellenbosch Department of Paediatrics
 Tygerberg Academic Hospital

○ In Johannesburg, South Africa:
 University of Witwatersrand
 Wits Reproductive Health and HIV Institute and Harriet Shezi Clinic
 Rahima Moosa Mother and Child Hospital

○ In Durban, South Africa:
 University of KwaZulu-Natal Family Medicine Department
 McCord Hospital

○ In Hlabisa, South Africa:
 Hlabisa HIV Program and Africa Centre for Health and Population Studies:
 ○ M, Maternal and Pediatric Infectious Disease Branch

○ In Bern, Switzerland:
 University of Bern,
 Institute of Social and Preventive Medicine